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matter

Gases

• Gases have atoms or molecules that do not bond to 
one  another in a range of pressure, temperature 
and volume. 

• These molecules haven’t any particular order and 
move freely within a container.

Liquids and Liquid Crystals

• Similar to gases, liquids haven’t any atomic/molecular 
order and they assume the shape of the containers.

• Applying low levels of thermal energy can easily break the 
existing weak bonds.
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Solid ?

Solid State Physics 

The purpose of this course is to 
present a survey of the phenomena 
exhibited by solid state systems and 
an introduction to the fundamental 
physical principles, mathematic 
concepts, and experimental techniques 
important in the study of solid state 
material.
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Course information
• Textbook: Charles Kittel “Introduction to solid 

state physics” 7th , 1995.
• Instructor : 1) Jian Gong  (Lecture)

STB 0605
Tel: 4992967 

2)  Haiyun Xue (HW & Question)
Tel: ?

Homework, Quizzes, and Exam

• 20% from homework
Homework assignments will be given out in class.

• 10% from quizzes
The quizzes will be held at the beginning of class  
after a topic has been concluded.

• 70% from final exam
The final exam will contain questions that may 
come from any topic which has been covered in 
class.

Your course grade will be determined 
as follows:

Schedule
Chapter One, Crystal structure

Chapter Two, Reciprocal lattice

Chapter Four, Phonons I: Crystal vibration
Chapter Five, Phonons II: Thermal properties

Chapter Six, Free electron Fermi gas 

Chapter Seven, Energy bands

Chapter Eight, Semiconductor crystals
Chapter Nine, Fermi surfaces and metals

Chapter Three, Crystal Binding and Elastic Constants

Final Exam.

Phenomena
Mechanical 

structure
strength

Thermal
heat capacity
heat conduction
phase transition

Electrical
insulators
metals
semiconductors
superconductors

Optical
reflection, refraction

Magnetic
ferromagnetism

Principles
Newton’s laws
Maxwell’s EM equation
Thermodynamics and    

statistical mechanics
Quantum mechanics

Schrodinger equation
Pauli exclusion principle

Order and symmetry

Reference
• Introduction to solid state physics, Charles 

Kittel 1995.
• Solid state physics, Giuseppe Grosso ,2006.
• Solid state physics, Ashcroft, Neil W, 2004.
• 固体物理学, 黄昆, 
• 固体物理学, 方俊鑫,陆栋, 1980.
• 固体物理学, 阎守胜, 2003.
• 固体物理,韦丹, 2007.

What is a “Solid”?
A material that keeps its shape.
• can be deformed by stresses
• returns to the original shape if it is not 

strained too much
---- differs from “Fluid” Structure difference ?

The atomic scale nature of materials has 
known for less than 100 years.

The mechanical properties, especially strength against large strains, 
have been part of human advances for thousands of years.
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SOLID MATERIALS

CRYSTALLINE POLYCRYSTALLINE AMORPHOUS
(Non-crystalline)

Single Crystal

ELEMENTARY CRYSTALLOGRAPHY Crystalline Solid
• Crystalline Solid is the solid form of a substance   in   

which   the   atoms  or molecules are  arranged  in  a  
definite, repeating pattern in three dimension.

• Single crystals, ideally have a high degree of order, or 
regular geometric periodicity, throughout the entire volume 
of the material.

Single crystal has an atomic structure that repeats periodically across 
its whole volume. Even at infinite length scales, each atom is related 
to every other equivalent atom in the structure by translational
symmetry

What is “Solid State Physics”?
• The body of knowledge is about

the fundamental phenomena and classifications of solid. 

?
A characteristic behavior exhibited by classes of solids.

Such as  ductile vs. brittle materials
metals vs. insulators
superconductors
ferromagnetic material

The basic understanding of such “fundamental 
phenomena”has only occurred in the last 80 years.
Due to “quantum mechanics”

Aim of Solid State Physics

• Solid state physics (SSP) explains the properties of 
solid materials as found on earth.

• The properties are expected to follow from 
Schrödinger’s eqn. for a collection of atomic nuclei 
and electrons interacting with electrostatic forces.

• The fundamental laws governing the behaviour of 
solids are known and well tested.

Chapter One 
Crystal structure

• Periodic arrays of atom
• Fundamental types of lattices
• Index system for crystal planes
• Simple crystal structure
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Drusy Quartz in Geode Tabular Orthoclase Feldspar

Encrusting Smithsonite

Peruvian Pyrite

Snow crystal

Calcite(CaCO3) crystal is made 
from spherical particles.

Christiaan Huygen, Leiden1690

A crystal is made from spherical particles.
Robert Hooke, London 1745

depicted by RenéHaüy, 

Paris, 1822

• X-rays were discovered in 
1895 by the German
physicist Wilhelm Conrad 
Röntgen and were so named
because their nature was
unknown at the time.

• He was awarded the Nobel 
prize for physics in 1901.

Wilhelm Conrad Röntgen
(1845-1923) 

Bertha Röntgen’s
Hand 8 Nov, 1895

Periodic arrays of atom

In 1912  
Interference effects with Rontgen rays,    Laue-1914

2. the studies have been extended to include amorphous 
or glasses and liquids.

1. The crystals are composed of a periodic array of atoms.

In 1912  ZnS
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Solid:        Crystal        vs.     Amorphous (glassy)

Ordered array of atoms Disordered arrangement
Competition between attractive (binding) force and repulsive force.    

Regular array lowers system energy.

Complicated !--difficult to predict the structure of materials

• Importance: structure plays a major role in 
determining physical properties of solids

• Determination: X-ray and neutron scattering are key 
tools for determining crystal structure.
Also microscopic techniques such SEM, TEM  (bulk)           
STM,AFM…(surface)

Crystal structure

Si surface : G.Binning and H.Rohrer STM in 1986

Z. L. Wang

• Deviation: There is no perfect crystal.
Many key properties depend on deviation 

more.
Defects – imperfection in crystal
Phonons- lattice vibrations 
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SOLID MATERIALS

CRYSTALLINE POLYCRYSTALLINE AMORPHOUS
(Non-crystalline)

Single Crystal

ELEMENTARY CRYSTALLOGRAPHY

Review
Solid:        Crystal        vs.     Amorphous (glassy)

Ordered array of atoms Disordered arrangement

Competition between attractive (binding) force and repulsive force.    

Regular array lowers system energy.

Symmetry of a crystal can have a profound influence 
on its properties.

Any crystal structure should be specified completely, 
concisely and unambiguously.

Structures should be classified into different types 
according to the symmetries they possess.

For SSP

crystal structure ?

Deals with the geometric description of 
crystals and their internal arrangement.

The branch of science crystallography

• A basic knowledge of crystallography is essential for 
solid state physicists;
– to specify any crystal structure and
– to classify the solids into different types according to the 

symmetries they possess.

• Symmetry of a crystal can have a profound influence 
on its properties.

• We will concern in this course with solids with simple 
structures.

ELEMENTARY CONTENTS

• Periodic arrays of atom
lattice translation vectors
Basis and crystal structure
Primitive lattice cell

• Fundamental types of lattices
2D lattice types
3D lattice type
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What is crystal (space) lattice?

Platinum Platinum surface Crystal lattice and 
structure of  Platinum

one  replaces each atom by a geometrical point located at 
the equilibrium position of that atom.

a. Lattice translation vectors

Crystal
periodic array of atoms:

Point lattice –mathematical points in space 

point lattice + basis

Lattice +basis=crystal structure

• An infinite array of 
points in space,

• Each point has 
identical surroundings 
to all others.

• Arrays are arranged 
exactly in a periodic 
manner.

α

a

b
CB ED

O A

y

x

Crystal structure can be obtained by attaching atoms, 
groups of atoms or molecules which are called basis 
(motif)  to the lattice sides of the lattice point.

crystal structure different choices for the basis

Lattice +basis=crystal structure

• Don't mix up atoms with 
lattice points

• Lattice points are 
infinitesimal points in 
space

• Lattice points do not 
necessarily lie at the 
centre of atoms

To describe a CS, there three important question to answer:

1. What is the lattice?

2. What choice of a1,a2,a3 do we wish to make?

3. What is the basis?

Attention

332211' auauaurr rrrrr
+++=

integer,, 321 ∈uuu
vectorlattice,, 321 =aaa rrr

Translation vectors 

),,( 321 aaa rrr

From the point r

Lattice?

r

r ’
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1a
1a 1a

1a1a

2a

2a

2a
2a

2a

The choice of lattice vectors is not unique. Thus  
one could equally well take the vectors a and b’ as a 
lattice vectors.

Smallest valume Primitive translation vectors

Crystal axes

⊗ One lattice point per primitive cell. 

A cell will fill all space by the repetition of suitable crystal
translation operations. ----A minimum volume cell.

b. Primitive Lattice Cell

Same for all primitive 
cells

φsin21

21

aa

aaAcell
rr

rr

=

×=

Not unique (3D)

1a
1a 1a

1a1a

2a

2a

2a
2a

2a

Not unique (2D)

⊗ Not unique.

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

a

S

S

b

S
a

b

2D Unit Cell example -(NaCl)

We define lattice points ; these are points with identical 
environments

it doesn’t matter if you start from Na or Cl
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lattice points need not be atoms

This is NOT a unit cell even though they 
are all the same - empty space is not 
allowed!

Wigner-Seitz Primitive cell in 2D (or 3D)

*  Draw lines to connect a given lattice point to all nearby 
lattice points.

*  Draw bisecting lines (or planes) to the previous lines.

*  The smallest area (or volume) enclosed.

All the space of the crystal
may be filled by these primitive cells

Highest symmetry

An atom --- the center of unit cell

c. Fundamental types of Bravais lattices

Bravais lattices

One atomBasis
Based on symmetries :
Translational – same if translate by a vector 

332211 auauauT rrrr
++=

Operation Element
Rotation Axis

Reflection Plane
Inversion Point

Rotoinversion Axes

90
°

120
°

180
°

2)  Rotational–same if lattice is rotated by an angle about a point

The axis is called n-fold if the angle of rotation is 2π/n.
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3)  Mirror symmetry –same if reflected about a plane 

4)  Inversion symmetry –same if reflected through a point 
(equivalent to rotation 180 and mirror ⊥ rotational axis 

A Bravais lattice  is a lattice in which every 
lattice point has exactly the same 
environment.

unit cell ≠ Primitive cellunit cell =Primitive cell

Crystal Structure 30

UNIT CELL

Primitive Conventional & Non-primitive

Single lattice point per cell
Smallest area in 2D, or
Smallest volume in 3D

More than one lattice point per cell
Integral multibles of the area of
primitive cell

Body centered cubic(bcc)
Conventional ≠ Primitive cell

Simple cubic(sc)
Conventional = Primitive cell 
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Three-Dimensional lattice types

conventional cell: more obvious relation with the 
point symmetry operation

Primitive cell

conventional cell

sometime

Primitive cell

conventional cell

sometime

Figure

Figure

Figure

Figure

Figure

Figure

Figure
return

return return
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return

Three common Unit Cell in 3D
Characteristics of cubic lattices

aThe packing fraction is the maximum proportion of the available volume 
that can be filled with hard spheres.

a
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1

Review

• What is lattice?

periodic array of atoms point lattice + basis

332211' auauaurr rrrrr
+++=

integer,, 321 ∈uuu
vectorlattice,, 321 =aaa rrr

2

• Primitive Lattice Cell

⊗ One lattice point per primitive cell.
⊗ A minimum volume cell
⊗ Not unique. Wigner-Seitz Primitive cell

3

• Bravais lattices
a lattice in which every lattice point has exactly 

the same environment.

Five Bravais lattices in two dimension

4

5

Crystal Lattice

Bravais Lattice (BL) Non-Bravais Lattice (non-BL)

All atoms are of the same kind
All lattice points are equivalent

Atoms can be of different kind
Some lattice points are not 
equivalent

A combination of two or more BL

6
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a. Crystal Directions

III. Directions and planes in crystals

• We choose one lattice point on the line 
as an origin, say the point O. Choice of 
origin is completely arbitrary, since 
every lattice point is identical. 

• Then we choose the lattice vector 
joining O to any point on the line, say 
point T. This vector can be written as;

R = n1 a + n2 b + n3c
• To distinguish a lattice direction from a 

lattice point, the triple is enclosed in 
square brackets [ ...] is used.[n1n2n3]

• [n1n2n3] is the smallest reduced integer
of the same relative ratios.

Fig. Shows 
[111] direction

9

Examples

X = 1 , Y = ½ , Z = 0
[1 ½ 0] [2 1 0]

X = ½ , Y = ½ , Z = 1
[½ ½ 1]     [1 1 2]

210

10

Cubic has highest symmetric directions 

11

• When we write the 
direction [n1n2n3] depend 
on the origin, negative 
directions can be written 
as 

R = n1 a + n2 b + n3c
• Direction must be 

smallest integers

Negative directions

][ 321 nnn
Y direction

(origin) O
- Y direction

X direction

- X direction

Z direction

- Z direction

][ 321 nnn

12

Examples 1

X = -1  , Y = -1 , Z = 0        [110]X = 1 , Y = 0 , Z = 0            [1 0 0]
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13

We can move vector to the origin.

Examples 2

X =-1   , Y = 1  , Z = -1/6
[-1 1 -1/6] ]1 6 6[

14

Crystal planes

• Within a crystal lattice it is possible to identify sets of 
equally spaced parallel planes. These are called lattice 
planes.

• In the figure density of lattice points on each plane of a 
set is the same and all lattice points are contained on 
each set of  planes.

b

a

b

a

The set of
planes in
2D lattice.

15

Same lattice , two crystal planes

16

Miller Indices

Miller Indices are a symbolic vector 
representation for the orientation of an atomic 
plane in a crystal lattice.

Notes:

1) Determine the intercepts of the plane along each 
of the three crystallographic directions

2) Take the reciprocals of the intercepts 

3) If fractions result, multiply each by the denominator 
of the smallest fraction

17

Axis X Y Z

Intercept 
points 1 ∞ ∞

Reciprocals 1/1 1/ ∞ 1/ 
∞

Smallest 
Ratio 1 0 0

Miller İndices    (100)

Example-1

(1,0,0)

18

Axis X Y Z

Intercept 
points 1 1 ∞

Reciprocals 1/1 1/ 1 1/ 
∞

Smallest 
Ratio 1 1 0

Miller İndices    (110)(1,0,0)

(0,1,0)

Example-2
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19

Axis X Y Z

Intercept 
points 1 1 1

Reciprocals 1/1 1/ 1 1/ 1
Smallest 

Ratio 1 1 1

Miller İndices    (111)(1,0,0)

(0,1,0)

(0,0,1)

Example-3

20

Axis X Y Z

Intercept 
points 1/2 1 ∞

Reciprocals 1/(½) 1/ 1 1/ 
∞

Smallest 
Ratio 2 1 0

Miller İndices    (210)

(1/2, 0, 0)

(0,1,0)

Example-4

21

Axis a b c

Intercept 
points 1 ∞ ½

Reciprocals 1/1 1/ ∞ 1/(½)

Smallest 
Ratio 1 0 2

Miller İndices    (102)

Example-5

22

Example-6

23

Example-7

24

Six kinds of planes in cubic crystal
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Coordination Number

• Coordination Number (CN) : The Bravais lattice points 
closest to a given point are the nearest neighbours.

• Because the Bravais lattice is periodic, all points have 
the same number of nearest neighbours or coordination 
number. It is a property of the lattice.

• A simple cubic has coordination number 6; a body-
centered cubic lattice, 8; and a face-centered cubic 
lattice,12.

26

Atomic Packing Factor

• Atomic Packing Factor (APF)  is defined as the 
volume of atoms within the unit cell divided by the 
volume of the unit cell.

27

Most common crystal structures :

1. Simple Cubic lattice  

conventional cell : 1 atom/cube 

6 nearest neighbors

a

b c

28

Simple Cubic lattice

29

Packing Factor of SC

30

2. Body Centered Cubic lattice 

Conventional cell : 2 atoms/ cube 

Not a primitive lattice

8 nearest neighbors

Alkali metals : Li, Na, K, Rb, Cs
Ferromagnetic metals : Cr, Fe
Transition metals : Nb, V, Ta, Mo, W

• BCC lattice + single atom basis
• SC lattice + basis of 2 atoms at (0,0,0) and (1/2,1/2,1/2)
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31

Face Centered Cubic (FCC)?

Packing Factor
Numbers of nearest neighbors
Primitive translation vector
The angle between two adjacent edges
Edge

32

)ˆˆˆ(
2

)ˆˆˆ(
2

)ˆˆˆ(
2

3

2

1

zyxaa

zyxaa

zyxaa

+−=

++−=

−+=

r

r

r

Primitive translation vector

33

Body-centered Cubic lattice 

Primitive cell : 
Rhombohedron

1. Edge 
2. the angle between 

two adjacent edges is 
109o28’

a
2
3

34

Packing Factor of BCC

0.68  =  
V
V  =  APF

cell unit

atoms
BCC

2 (0,433a)
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Review

1. Directions and planes in crystals

Miller Indices
Notes:

1) Determine the intercepts of the plane along each 
of the three crystallographic directions

2) Take the reciprocals of the intercepts 

3) If fractions result, multiply each by the denominator 
of the smallest fraction

2

2. Coordination Number

3. Atomic Packing Factor

number of nearest neighbours

SCC  6 

BCC   8

SCC  0.52 

BCC   0.68

3

3. Face Centered Cubic lattice : 

• There are atoms at the corners of the unit cell and at the 
center of each face.

• Face centered cubic has 4 atoms so its non primitive cell.
• Many of common metals (Cu,Ni,Pb..etc) crystallize in FCC 

structure.

4

Conventional cell : 4 atoms/ cube 

Not a primitive lattice

12 nearest neighbors

Noble metals : Cu, Ag, Au
Transition metals : Ni, Pd, Pt, 
Inert gas solids : Ne, Ar, Kr, Xe

• FCC lattice + single atom basis

• SC lattice + basis of 4 atoms at (0,0,0),  (1/2,1/2,0)
(1/2,0,1/2),and (0,1/2,1/2)

5

)ˆˆ(
2

)ˆˆ(
2

)ˆˆ(
2

3

2

1

zxaa

zyaa

yxaa

+=

+=

+=

r

r

r

Primitive translation vector

Rhombohedral Primitive cell
The angle between two adjacent edges : 60o

Edge :
2
2

6

740.  =  
V
V  =  APF

cell unit

atoms
FCC

Packing Factor of FCC
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A crystal system in which three equal coplanar axes 
intersect at an angle of 60 , and a perpendicular to the 
others, is of a different length.

4. Hexagonal Close-Packed lattice

8

HEXAGONAL SYSTEM

9

1

0
21

633.1

120angleincludedanwith,

ac

aa

=

=

a1, a2, and c do not construct a primitive 
lattice
a1, a2, and a3 construct a primitive lattice 

321 aaa ==

12 nearest neighbors

Transition metals : Sc, Y, Ti, Zr, Co…
IIA metals : Be, Mg 

Hexgonal lattice + basis of 2 atoms at (0,0,0) and (2/3,1/3,1/2)
10

Close-Packed lattice

Hexagonal Close-Packed lattice     HCP

Cubic Close-Packed lattice            FCC

11

1th step: Spheres are 
arranged in a single closed-
packed layer A by placing 
each sphere in contact with 
six others. 

2th step: A second similar 
layer bottom B may be 
added by placing each 
sphere of B in contact with 
there spheres of the bottom 
layer.

3th step: A third layer C 
may be added in two way.

A
B

FCC (A-B-C)HCP (-A-B-)

12

A

B

A

A层：
B层：

C层：
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13 14

A A

AA

AA

A

AAA

AA

AAA

AAA
B B

B

B

B B

B

B

B

BB

C C C

CC

C

C

C C C

Sequence ABABAB..
-hexagonal close pack

Sequence ABCABCAB..
-face centered cubic close pack

Close pack

B
AA

AA

A

A

A

A A

B

B B

Sequence AAAA…
- simple cubic

Sequence ABAB…
- body centered cubic

Packing

15

Close pack

16

5 Diamond Structure

• The diamond lattice is consist of two interpenetrating 
face centered bravais lattices.

• There are eight atom in the structure of diamond.
• Each atom bonds covalently to 4 others equally 

spread about atom in 3d.

17 18
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for example, C→diamond or graphite (hexagonal)

Some atoms form multiple stable structures:

An STM image of a graphite 
surface clearly shows the 
interconnected 6-membered 
rings of graphite 

20

graphite diamond

21

Fullerene 

Graphene

22

23

1. Sodium Chloride Structure

• Sodium chloride also 
crystallizes in a cubic lattice, 
but with a different unit cell.

• Sodium chloride structure 
consists of equal numbers of 
sodium and chlorine ions 
placed at alternate points of a 
simple cubic lattice.

• Each ion has six of the other 
kind of ions as its nearest 
neighbours.

MOST IMPORTANT 
CRYSTAL STRUCTURES

24
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• If we take the NaCl unit cell and remove all the red Cl
ions, we are left with only the blue Na. If we compare 
this with the fcc / ccp unit cell, it is clear that they are 
identical. Thus, the Na is in a fcc sublattice.

26

• This structure can be 
considered as a face-
centered-cubic Bravais lattice 
with a basis consisting of a 
sodium ion at 0 and a chlorine 
ion at the center of the 
conventional cell, 

• LiF,NaBr,KCl,LiI,etc
• The lattice constants are in 

the order of 4-7 angstroms.

)(2/
→→→

++ zyxa

27

2. Cesium Chloride Structure Cs+Cl-

• Cesium chloride crystallizes in a cubic 
lattice. The unit cell may be depicted as 
shown. (Cs+ is teal, Cl- is gold).

• Cesium chloride consists of equal numbers of 
cesium and chlorine ions, placed at the points 
of a body-centered cubic lattice so that each 
ion has eight of the other kind as its nearest 
neighbors.

28

• The translational symmetry of this structure is 
that of the simple cubic Bravais lattice, and is 
described as a simple cubic lattice with a basis 
consisting of a cesium ion at the origin 0 and a 
chlorine ion at the cube center 

• CsBr,CsI crystallize in this structure.The lattice 
constants are in the order of 4 angstroms.

)(2/
→→→

++ zyxa

29

8 cell 

30
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Homework

1.1,  1.2, 1.3

33

Chapter Two Reciprocal Lattice

Diffraction of waves by crystals

Scattered wave amplitude 

Reciprocal lattice vectors

Fourier analysis of the basis

34

How do we determine the structure of crystal ?
----bulk and surface structures

from real space

One can experimentally determine crystal structures

from diffraction to obtain the lattice 
structures in reciprocal space.

or

35

(1) Direct observation—see atoms directly on surface

STM picture of atoms 
on Si(111) surface

IV-VI  Quantum Dot AFM picture
From M. Pinczolits, Institute of 
Physics, University of  Lintz and
American Institute of Physics 36

(2) Diffraction of Radiation waves ---traditional method

Electron diffraction pattern 
of(111) diamond surface

Diffraction regime:λ~d  

scattering are sensitive to the crystal structure
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37 38

Nobel prizes
X-ray Diffraction:
Rontgen, 1901,; von Laue 1914;
Bragg, 1915
Electron microscopy/diffraction:
Ruska, Binig, &Rohrer, 1986
Neutron diffraction:
Brockhouse & Shull 1994

39

Max von Laue,1879-1960Arnold Sommerfeld,1868-1951 
1912

In 1912  ZnS
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"for groundbreaking achievements concerning the 
transmission of light in fibers for optical communication"
"for the invention of an imaging semiconductor circuit –

the CCD sensor"

Charles K. Kao Willard S. Boyle George E. Smith 

The Nobel Prize in Physics 2009

Review
1. crystal structure

Periodic arrays of atom

Lattice +basis=crystal structure

lattice translation vectors

332211' auauaurr rrrrr
+++=

integer,, 321 ∈uuu

vectorlattice,, 321 =aaa rrr

2. Primitive Lattice Cell
⊗ One lattice point per primitive cell.
⊗ A minimum volume cell
⊗ Not unique.

3. Bravais lattices

2D  3D

4. Directions and planes in crystals
Crystal Directions

Crystal plane Miller Indices
5. Most common crystal structures

Chapter Two Reciprocal Lattice

Diffraction of waves by crystals

Scattered wave amplitude 

Reciprocal lattice vectors

Fourier analysis of the basis

How do we determine the structure of crystal ?
----bulk and surface structures

from real space

One can experimentally determine crystal structures

from diffraction to obtain the lattice 
structures in reciprocal space.

or
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(1) Direct observation—see atoms directly on surface

STM picture of atoms 
on Si(111) surface

IV-VI  Quantum Dot AFM picture
From M. Pinczolits, Institute of 
Physics, University of  Lintz and
American Institute of Physics

(2) Diffraction of Radiation waves ---traditional method

Electron diffraction pattern 
of(111) diamond surface

Diffraction regime:λ~d  

scattering are sensitive to the crystal structure

LIGHT  INTERFERENCE Diffraction from a particle and solid
Single particle
• To understand diffraction we also have to 

consider what happens when a wave 
interacts with a single particle. The 
particle scatters the incident beam 
uniformly in all directions

Solid material
• What happens if the beam is incident 

on solid material? If we consider a 
crystalline material, the scattered 
beams may add together in a few 
directions and reinforce each other to 
give diffracted beams

Nobel prizes
X-ray Diffraction:
Rontgen, 1901,; von Laue 1914;
Bragg, 1915
Electron microscopy/diffraction:
Ruska, Binig, &Rohrer, 1986
Neutron diffraction:
Brockhouse & Shull 1994

X-Ray

λ = 1A°

E ~ 104 eV

interact with electron
Penetrating

Neutron

λ = 1A°

E ~ 0.08 eV

interact with nuclei
Highly Penetrating

Electron

λ = 2A°

E ~ 150 eV

interact with electron
Less Penetrating
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X-RAY

• X-rays were discovered in 
1895 by the German
physicist Wilhelm Conrad 
Röntgen and were so named
because their nature was
unknown at the time.

• He was awarded the Nobel 
prize for physics in 1901. Wilhelm Conrad Röntgen

(1845-1923) 

Max von Laue,1879-1960Arnold Sommerfeld,1868-1951 

In 1912  ZnS

X-Ray Diffraction & Bragg Equation

• English physicists Sir W.H. Bragg 
and his son Sir W.L. Bragg
developed a relationship in 1913 
to explain why the cleavage faces 
of crystals appear to reflect X-ray 
beams at certain angles of
incidence (theta, θ).This 
observation is an example of X-ray 
wave interference. Sir William Henry Bragg (1862-1942),

William Lawrence Bragg (1890-1971)

o 1915, the father and son were awarded the Nobel prize 
for physics "for their services in the analysis of crystal 
structure by means of Xrays".

Diffraction of waves by crystals

Bragg presented a simple explanation of the diffracted beams 
from a crystal

condition for constructive interference from a crystal

λθ nd =sin2 Bragg Law
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Recall in one dimension

is a point in the reciprocal lattice or Fourier 
space of the crystal.

Reciprocal lattices Vectors

P

ρ=OP

πρ 2=d
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Howwork

• Please calculate primitive translate vectors 
of crystal lattice and reciprocal lattice to 
BCC and FCC.

P51  2.1  &2.2
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Topic:

How do we determine the structure of crystal  
experimentally?

Email to ndgong@imu.edu.cn
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Review
1. crystal structure

Periodic arrays of atom

Lattice +basis=crystal structure

lattice translation vectors

332211' auauaurr rrrrr
+++=

integer,, 321 ∈uuu

vectorlattice,, 321 =aaa rrr

2. Primitive Lattice Cell
⊗ One lattice point per primitive cell.
⊗ A minimum volume cell
⊗ Not unique.

3. Bravais lattices

2D  3D

4. Directions and planes in crystals
Crystal Directions

Crystal plane Miller Indices
5. Most common crystal structures

X-Ray Diffraction & Bragg Equation

• English physicists Sir W.H. Bragg 
and his son Sir W.L. Bragg
developed a relationship in 1913 
to explain why the cleavage faces 
of crystals appear to reflect X-ray 
beams at certain angles of
incidence (theta, θ).This 
observation is an example of X-ray 
wave interference. Sir William Henry Bragg (1862-1942),

William Lawrence Bragg (1890-1971)

o 1915, the father and son were awarded the Nobel prize 
for physics "for their services in the analysis of crystal 
structure by means of Xrays".

Diffraction of waves by crystals

Bragg presented a simple explanation of the diffracted beams 
from a crystal

condition for constructive interference from a crystal

λθ nd =sin2 Bragg Law
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Recall in one dimension

is a point in the reciprocal lattice or Fourier 
space of the crystal.

Reciprocal lattices Vectors

P

ρ=OP

πρ 2=d

1 2
3

1 2 3

2 a ab
a a a

π ×
=

⋅ ×

r rr
r r r

2 3
1

1 2 3

2 a ab
a a a

π ×
=

⋅ ×

r rr
r r r 3 1

2
1 2 3

2 a ab
a a a

π ×
=

⋅ ×

r rr
r r r

332211321
bnbnbnG nnn

vvvv
++=

2 ( )
2

0 ( )i j ij

i j
a b

i j
π

πδ
= =⎧

⋅ = ⎨= ≠⎩

vv 3,2,1, =ji

Reciprocal lattice vector

Satisfy:
2 ( )

2
0 ( )i j ij

i j
a b

i j
π

πδ
= =⎧

⋅ = ⎨= ≠⎩

vv 3,2,1, =ji

321 nnnG
v

1)exp( =•TGi
vv

)]()(exp[)exp( 332211332211 auauaubnbnbniTGi vvvvvvvv
++•++=•

)](exp[)exp( 332211 unununiTGi ++=•
vv
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Examples

1.  reciprocal lattices for 1D and 2D-rectangular structures

2 ( )
2

0 ( )i j ij

i j
a b

i j
π

πδ
= =⎧

⋅ = ⎨= ≠⎩

vv 3,2,1, =ji

Role of reciprocal lattice in X-ray diffraction
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In the elastic scattering

Diffraction condition 

λθ nd =sin2 Bragg law 

We prove this in three steps

(1) Show that the reciprocal lattice vector                     
is orthogonal to the plane represented by Miller indices 
(h,k,l).

(2) Now we prove that the distance between two adjacent 
parallel planes of the direct lattice is d hkl =2π/|Ghkl|.

(3) Show that the diffraction condition is equivalent to the 
Bragg law

Bragg law 

GnG

Diffraction condition

Reciprocal lattice vector

must lie at the intersection of cones (cosθfixed) 
around each lattice vector.

K
v

Δ

1913 Ewald An Ewaldconstruction
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Homework

• Please calculate primitive translate vectors 
of crystal lattice and reciprocal lattice to 
BCC and FCC.

P51  2.1  &2.2
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Topic:

How do we determine the structure of crystal  
experimentally by X-ray diffraction?

Email to ndgong@imu.edu.cn
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Chapter Three Crystal Binding

Contents: 

☻Types and strengths of binding forces 

☻Reason for crystal structure formation

☻Mechanical properties of crystals 

What kind of force holds the atoms
together in a solid?

Why do atoms form crystals or solids?

Atoms bind due to the Coulomb attractive forces 
between electrons and neighboring atomic ions.

Answer : Interatomic forces that bind atoms.

Energies of Interactions Between Atoms

The energy of the crystal is lower than that of the free 
atoms by an amount equal to the energy required to 
pull the crystal apart into a set of free atoms.

Cl Na NaCl

≡ the energy that must be added to the crystal to separate 
its components into neutral free atoms at rest

≡ Energy of free atoms - Crystal energy

Cohesive (binding) energy U

Hence, U>0 to form a stable solid

NaCl is more stable than a collection of free Na and Cl.
Ge crystal is more stable than a collection of free Ge.

• Magnitude ~ 1-10eV except for the inert gas 
crystals (0.02-0.2eV)

• U ≤Eion(Ionization energy = Binding energy 
of valence electrons)

• U controls the melting temperature and bulk 
modulus

This typical curve has a 
minimum at equilibrium distance 
R0
R > R0 ;

the potential increases 
gradually, approaching 0 as 
R ∞

the force is attractive
R < R0;

the potential increases very 
rapidly, approaching ∞ at 
small separation.
the force is repulsive

R

r R

V(R)

0 R0

Repulsive

Attractive

Force between the atoms is the negative of the slope of this curve. At 
equlibrium, repulsive force becomes equals to the attractive part.

R

r R

V(R)

0 R0

Repulsive

Attractive
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The potential energy of either atom will be given by:

V= decrease in potential energy+increase in potential energy
(due to attraction) (due to repulsion)

( ) m n

a bV r
r r
−

= +

V(r): the net potential energy of interaction as 
function of r.
r : he distance between atoms, ions, or molecules.
a,b: proportionality constant of attraction and
repulsion, respectively.
m, n: constant characteristics of each type of bond
and type of structure.

or simply:

Types of bonds
(a)  Van der Waals (Molecular)   

Electrons localized among atoms
(b) Covalent     Electrons shared by the neighboring atoms
(c)  Metallic      Electrons free to move through sample
(d)  Ionic           Electrons transferred to adjacent atoms

All bonding is a consequence of the electrostatic  interaction 
between nuclei and electrons obeying Schrödinger’s equation.

(a) Molecular bonding

• Transparent Insulators –completely filled outer 
electron shells 

• Weakly bonding –van der Waals bonding 
• FCC structures except for He3and He4

Inert gas crystals : He, Ne, Ar, Kr, Xe, Rn

high ionization energies

low melting temperatures

Phase diagrams of (a) 4He and (b) 3He. 

Van der Waals –London Interaction

Consider two identical intert gas atoms

Neutral: positive nucleus + spherically symmetric distribution of 
electron charge

No interaction between atoms -> No cohesion(No solid) ?

Fluctuating dipole –dipole interaction Attractive interaction 
between the atoms

Inert gas solids

•On average spherically symmetric distribution of electron charge 
with the positive nucleus in the center.

•But thermal fluctuations (finite T) cause instantaneous electric
dipole moment

ps. The bigger a molecule is, the easier it is to polarise (to form a dipole), 
and so the van der Waal's forces get stronger, so bigger molecules exist 
as liquids or solids rather than gases.
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☻On adjacent atoms if the dipoles are random there could be no 
net force (time average) 

☻But dipole induces a dipole in neighboring atoms that always 
gives an attractive force 

No attraction is produced Display a marked
attractive forces

Instantaneous interaction

attractive force Repulsive force

linear harmonic oscillators

Model for inert gas solid –two identical linear harmonic oscillators

p1and p2are the momenta of these two oscillators
C is the force constant

Hamiltonian for the unperturbed system

2
2

2
22

1

2
1

0 2
1

22
1

2
Cx

m
pCx

m
pH +++=

–no Coulomb interaction

Hamiltonian for Coulomb interaction energy of the system

2

2

1

2

21

22

1 xR
e

xR
e

xxR
e

R
eH

+
−

+
−

−+
+=

⎯⎯⎯ →⎯ <<Rxx 21 ,

3

21
2

1
2

R
xxeH −≅

Normal mode transformation --symmetric (s) and anti-symmetric (a)

2
;

2
2121 xxxxxx as

−
≡

+
≡

Total Hamiltonian after the transformation

⎥
⎦

⎤
⎢
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⎡
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⎜⎜
⎝
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⎦
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⎡
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diabonalization

2
2

2
22

1

2
1

0 2
1

22
1

2
Cx

m
pCx

m
pH +++=

m
CH =00 ,ω

Two frequencies of the 
coupled oscillators 
symmetric (s) and anti-
symmetric (a)
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a
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s
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The zero point energy

The uncoupled oscillators

The coupled oscillators

00 2
1

2
1 ωω hh +

as ωω hh
2
1

2
1

+

m
ReC

s

32 /2−
=ω

2/1
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Therefore,
the zero point energy of the coupled oscillators is lowered 
from the uncoupled oscillators by

63

2

0 22
8
1

2
1

R
A

CR
eU −=⎥

⎦

⎤
⎢
⎣

⎡
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Δ ωh

Attractive interaction
The van der Waals interaction, the London interaction, 
the induced dipole-dipole interaction 

6R
AU −=Δ 2

02

4

0 2
αωω hh ≡=

C
eA

electronic polarizability

• When charge distributions of two atoms overlap, there is a tendency for 
electrons from atom B to occupy in part states of atom A occupied by electrons 
of atom A, and vice versus.

• Pauli exclusion principle prevents multiple occupancy, and electron distribution 
of atoms with closed shells can overlap only if accompanies by the partial 
promotion of electrons to unoccupied high energy state of the atom. 

What limits attraction ? --Repulsive force (Pauli
exclusion principle)

Two electrons can not have all their quantum number s the same.

The electron overlap increases the total energy of the 
system and gives a repulsive contribution to the 

interaction. 

Empirical formula for such repulsive potential 012 >=Δ
r
Bu

The total potential for inert gas system

U(r)= UPauli+UvdW

612)(
r
A

r
Bru −=

])()[(4 612

rr
σσε −=

the Lennard-Jones potential

Potential where empirical parameters A=4εσ6and B= 4εσ12are 
determined from independent measurements made in the gas phase.

N atoms in the crystal 

∑
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2
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where Rnn is nearest neighbor distance and pijRnnis
the distance between atom i and atom j 
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6
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12
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2
1

nnijji ijnnji ij
Total RPPRP

NU σσε

Dimensionless
Both lattice sums can be done for any structure.

Sum of 1/pn converges rapidly for large n.

More distant neighbors have more influence on the latter term than 
the former term.

FCC structure and 13188.121
12 =∑

≠ ji ijp
45392.141

6 =∑
≠ ji ijp

HCP structure, 13229.121
12 =∑

≠ ji ijp
and 45489.141

6 =∑
≠ ji ijp

Both structures have 12 nearest neighbors.

BCC structure, 11418.91
12 =∑

≠ ji ijp
and 25330.121

6 =∑
≠ ji ijp

BCC structure has 8 nearest neighbors.
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Cohesive energy of inert gas crystals at 0K

--minimum Utotal(Equilibrium)

( )( ) ( ) ⎥
⎦
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⎢
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6

13
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σ
σε R
R

N 0=

minimum a is  )4)(15.2(  U,09.1Rat  tatal0 εσ N−==

1.091.101.111.14R0/ σ
3.983.653.402.74σ(Å)
4.354.013.763.13R0(Å)
XenonKryptonArgonNeon

FCC structure

Deviation

Quantum corrections
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Review
1. Cohesive (binding) energy U

2. Types of bonds
(a)  Van der Waals (Molecular)   

Electrons localized among atoms
(b) Covalent     Electrons shared by the neighboring atoms
(c)  Metallic      Electrons free to move through sample
(d)  Ionic           Electrons transferred to adjacent atoms

3. Molecular bonding

the Lennard-Jones potential 612)(
r
A

r
Bru −=

(d) Ionic bonding

Alkali halides
Li, Na, K, Rb, Cs
F, Cl, Br, I

Ionic bonding is the electrostatic force of attraction 
between positively and negatively charged ions (between 
non-metals and metals).

These ions have been produced as a result of a 
transfer of electrons between two atoms with a large 
difference in electro-negativities.

All ionic compounds are crystalline solids at room 
temperature.

Electron configuration : closed electronic shells
For examples, LiF:    Li+ (1S2) instead of Li (1S22S)

F- (1S22S22p6) instead of F (1S22S22p5)

The metallic elements 
have only up to the 
valence electrons in their 
outer shell will lose their 
electrons and become 
positive ions, whereas 
electronegative elements 
tend to acquire additional 
electrons to complete 
their octed and become 
negative ions, or anions.Na Cl

Like inert gas atoms

Charge distribution is 
spherically symmetric.

but
some distortion of 
charge distribution near 
the region of contact 
with neighboring atom 

Electron density distribution 
in the base plane of NaCl

Ionization energies and electron affinities of atoms

Ionization energy

Electron affinity

energy that must be supplied in order to 
remove an electron from a neutral atom

energy that is gained when an additional 
electron is added to a neutral atom

Ionic bonding is produced whenever 
an element w/. a relatively low ionization energy is combined with
an element w/. a high electron affinity.

For example : NaCl

when sodium loses its one valence electron it gets smaller in size, while 
chlorine grows larger when it gains an additional valance electron.

ionic bond

cohesive energy
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cohesive energy

When the Na+ and Cl- ions approach each other closely enough so 
that the orbits of the electron in the ions begin the overlap each 
other, then the electron begins to repel each other by virtue of the 
repulsive electrostatic coulomb force.

Pauli exclusion principle has an important role in repulsive force. 
To prevent a violation of the exclusion principle, the potential energy 
of the system increases very rapidly.

N  moleculars in the crystal 
Uij is the interaction energy between ions i and j ( i ≠j ) 

CGS        exp
ij

jiij
ij r

qqr
U +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=
ρ

λ

where R = nearest neighbor distance exp
Rp

qqRU
ij

ji
ij +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=
ρ

λ

∑∑
≠≠

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

ji ij

ji

ji
ij Rp

qqRNzUU
ρ

λ exptot

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

R
qRzN

2

exp α
ρ

λ

where z = number of 
nearest neighbors of 
any ion

Madelungconstant

∑ ±
≡

j ijp
'α

short range Pauli repulsive (why?) long range electrostatic

minimum Utotal (Equilibrium)

At equilibrium Ro,

Madelung constant α: geometric sum
depends on relative distance, number, and sign of neighboring atoms 
----- crystal structures and basis

One dimension : line of ions of alternating signs

for one dimensional chain

Calculation of Madelung constant
In three dimensions 
it is more complicated to calculate α.

• very long range electrostatic forces
• very slowly convergent

Special mathematical tricks are used to calculate Madelung constant.

Higher coordination number gives larger Madelung constant.

It depends on the structure of the crystal but not unit cell dimensions.
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(b) Covalent bonding

Covalent bonding takes place between atoms with 
small differences in electronegativity which  are 
close to each other in periodic table (between non-
metals and non-metals).

The covalent bonding is formed by sharing of outer 
shell electrons (i.e., s and p electrons) between 
atoms rather than by electron transfer.

Each electron in a shared pair is attracted to both 
nuclei involved in the bond. The approach, electron 
overlap, and attraction can be visualized as shown in 
the following figure representing the nuclei and 
electrons in a hydrogen molecule.

e

e

4 atoms in the valence band bond to 4 neighboring

Tetrahedral bonding

1s22s22p2

1s 2s
2p

2p

1s22s12p3
1s 2s

Diamond

)(
2
1

)(
2
1

)(
2
1

)(
2
1

2222

2222

2222

2222

4

3

2

1

zyx

zyx

zyx

zyx

pppsh

pppsh

pppsh

pppsh

φφφφϕ

φφφφϕ

φφφφϕ

φφφφϕ

+−−=

−+−=

−−+=

+++=
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The bond is usually formed from two electrons, 
one from each atom participating in the bond.

Electron forming the bond tend to be partially 
localized in the region between two atoms joined 
by the bond.

The spins of two electrons in the bond are antiparallel.

Calculated valence electron concentration in Ge.

Consider simple covalent bond : H -H

Both hydrogen atoms would like to form a filled outer 
shell--share electrons

Two cases : ↑↑(same spins on electrons)

↑↓(opposite spins on electrons)

Pauli exclusion principle forbids two electrons with the same states.
↑↑same spins: electrons must stay apart

↑↓opposite spins: electrons can occupy the same place

Neutral H has only one electron 
covalent bonding with one other atom

HF2
- is stabilized by a 

hydrogen bond.

In the extreme ionic form of the hydrogen bond, the 
hydrogen atom loses its electron to another atom in 
the molecule; 

the bare proton forms the hydrogen bond. 

The hydrogen bond connects only two atoms.

a hydrogen bond
between them under certain 
conditions

being formed only between the most electronegative 
atoms, such as F, O, and N.

0.1eV

(c) metallic bonding 

• Metallic bonding is the type of 
bonding found in metal 
elements. This is the 
electrostatic force of attraction 
between positively charged 
ions and delocalized outer 
electrons.

• The metallic bond is weaker 
than the ionic and the covalent 
bonds.
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High electrical conductivity : a large number of 
electrons in a metal are free to move 

conduction electrons

Outer electrons of 
atoms that form 
metals are loosely 
bound.

A metallic bond result from the sharing of a variable 
number  of electrons by a variable number of atoms.  

+

+

+

+

+

+

+

+

+

1. The potential energy barrier between atoms is reduced, 
the electron energy may be well above the potential 
energy maximum and their wave functions are then nearly 
plane waves in regions between atoms.

2. Weak binding, 1~5eV/atom   enlargement of the 
internuclear spacing.

3. Metals tend to crystallize in relatively closed packed 
structures : hcp, fcc, bcc, …

Homework

P93
3.1, 3.2, 3.3, 3.5a, 3.6
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Types of Bonding

Ionic 
Bonding

Van Der Waals
Bonding

Metallic
Bonding

Covalent
Bonding

Hydrogen
Bonding

High Melting Point

Hard and Brittle

Non conducting
solid

NaCl, CsCl, ZnS

Low Melting Points

Soft and Brittle

Non-Conducting

Ne,  Ar, Kr and Xe

Variable Melting
Point

Variable
Hardness

Conducting

Fe, Cu, Ag

Very High Melting
Point

Very Hard

Usually not
Conducting

Diamond, Graphite

Low Melting Points

Soft and Brittle

Usually
Non-Conducting

İce,
organic solids

Review Chapter Four Phonons I. 

Crystal vibrations

2. Two atoms per primitive basis

1. Vibrations of crystal with monatomic basis

3. Quantization of elastic waves (phonon)

5. Inelastic scattering by phonons

4. Phonon momentum

Prof. HUANG Kun

Crystal Dynamics
• Concern with the spectrum of characteristics 

vibrations of a crystalline solid.

• Leads to; 
– consideration of the conditions for wave propagation 

in a periodic lattice,
– the energy content,
– the specific heat of lattice waves,
– the particle aspects of quantized lattice vibrations 

(phonons)
– consequences of an harmonic coupling between 

atoms.   

Hooke's Law
• One of the properties of elasticity is that it takes 

about twice as much force to stretch a spring twice 
as far. That linear dependence of displacement upon 
stretching force is called Hooke's law. 

xkFspring .−=
↓F

Spring constant k

It takes twice
as much force
to stretch a
spring twice
as far.

↓F2
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SOUND WAVES
• Mechanical waves are waves which propagate 

through a material medium (solid, liquid, or gas) at a 
wave speed which depends on the elastic and inertial 
properties of that medium. There are two basic types 
of wave motion for mechanical waves: longitudinal 
waves and transverse waves.

Longitudinal Waves 

Transverse Waves 

• It corresponds to the atomic vibrations with a long λ.

• Presence of atoms has no significance in this 
wavelength limit, since λ>>a, so there will no 
scattering due to the presence of atoms.

• A solid is composed of discrete atoms, however 
when the wavelength is very long, one may 
disregard  the atomic nature and treat the solid 
as a continous medium. Such vibrations are 
referred to as elastic waves.

Lattice is not rigid. Atoms can move from equilibrium.

When wave propagates in the solid, there are 
one longitudinal and two transverse polarizations

Lattice vibrations of 1D crystal
Chain of identical atoms

• Atoms interact with a potential V(r) which can be 
written in Taylor’s series.

( )2 2

2( ) ( ) ...........
2 r a

r a d VV r V a
dr

=

− ⎛ ⎞
= + +⎜ ⎟

⎝ ⎠

r R

V(R)

0 r0=4

Repulsive

Attractive
min

This equation looks like as the potential energy 
associated of a spring with a spring constant :

ardr
VdK

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2

We should relate K with elastic modulus C:

KaC =

( )
a

arCForce −
×= )( arKForce −=

Monoatomic Chain
• The simplest crystal is the one dimensional chain of 

identical atoms.
• Chain consists of a very large number of identical 

atoms with identical masses.
• Atoms are separated by a distance of “a”.
• Atoms move only in a direction parallel to the chain.
• Only nearest neighbours interact (short-range forces).

a a a a a a

Us-2 Us-1 Us Us+1 Us+2

• Start with the simplest 
case of monoatomic
linear chain with only 
nearest neighbour 
interaction 

a a

Us-1 Us Us+1

The force on the sth atom;

)( 1 ss uuC −+

The force to the left; )( 1 ss uuC −−

The force to the right

)()( 11 ssssLRs uuCuuCFFF −+−=+= −+

)2( 112

2

sss
s uuuC

dt
udM −+= −+

☻ Set of coupled, linear, second order differential equations.

☻ Hard to solve in general if M’s and C’s are different.

☻ Method : a trial solution (good guess)
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[ ] satkxiAtu ss =−= s  x   where)(exp)( ω

tiiksaasikasiktiiksa eAeAeAeCeAeM ωωω −−+− −+=− )2()( )1()1(2

)2(2 −+=− −ikaika eeCMω

( )1)cos(2 −= kaC

( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=−=

2
sin22cos12 22 ka

M
Cka

M
Cω

2
sin4 ka

M
C

=ω Dispersion relation

• All atoms oscillate with a same amplitude A and 
frequency  ω. Then we can offer a solution;

2
sin4 ka

M
C

=ω

BZfirst  ofboundary  set the

maximum  :   4

When  

M
C

a
k

=

±=

ω

π

The dispersion relation is periodic with a period of 2π/a

Brillouin zone 

For a small k (ka<<1)   Long wavelength limit 

vk

kCaka
M
Cka

M
C

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=≈

λ
ω

2
4

Continuum elastic wave limit

Dispersion : ω≠vk

What is the wave velocity? ⎩
⎨
⎧

g

p

v velocity group
 v velocity phase

phase velocity

group velocity
k

vp
ω

=

( )k
dk
dv kg ωω

∇=≡
the velocity of energy propagation 
in the medium

group velocity

( )k
dk
dv kg ωω

∇=≡

phase velocity

k
vp

ω
=

phase velocity group velocity

( )

( )
2/

2/sin4
2

2/sin/4

ka
ka

M
Ca

k
kaMC

k
vp

=

=≡
ω ( )

⎟
⎠
⎞

⎜
⎝
⎛=

=≡

2
cos4

2

d
2/sind

/4
d
d

ka
M
Ca

k
ka

MC
k

vg
ω

( )
2/

2/sin
ka

ka
vv sp =

( )2/cos kavv sg =

( ) ( )BZfirst  ofboundary  on the liesk   /2v

vanishes! velocity group 0  v,
a

kWhen 

p

g

svπ

π

=

=±=
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a a

Us-1 Us Us+1

Monoatomic Chain

)2( 112

2

sss
s uuuC

dt
udM −+= −+

[ ] satkxiAtu ss =−= s  x   where)(exp)( ω

Review

2
sin4 ka

M
C

=ω Dispersion relation

ω versus k relation;

0 л/a 2л/a–л/a kk

C AB

0

ω

max 2

/ks

C
m

V

ω

ω

=

=

Note that:

• In above equation s is cancelled out, this means that the eqn. of 
motion of all atoms leads to the same algebraic eqn. This shows 
that our trial function Us is  indeed a solution  of the eqn. of 
motion of s-th atom.

• We started from the eqn. of motion of N coupled harmonic 
oscillators.. If one atom starts vibrating, it does not continue with 
constant amplitude, but transfer energy to the others in a 
complicated way; the vibrations of individual atoms are not simple 
harmonic because of this exchange energy among them.

• Our wavelike solutions on the other hand are uncoupled 
oscillations called normal modes; each k has a definite w given by 
above eqn. and oscillates independently of the other modes.

• So the number of modes is expected to be the same as the number 
of equations N. Let’s see whether this is the case;

2
sin4 ka

M
C

=ω How about the motion of atoms?

( )[ ]  waveplane a     exp)( tksaiAtus ω−=

The relative displacement between two adjacent atoms

For a fixed k,

For the other fixed Gk
a

nkk +=+=
π2'

ikainikaaanki

s

s eeee
U
U

=== ++ ππ 2)/2(1

same

The displacement can always be described by a wave vector

)](exp[)]2(exp[ tqsaiAtqsasiA ωωπ −−=−−=

-qk as same =

within the first BZ

The displacement can always be described by a 
wave vector within the first BZ.
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What is the physical significance  of wave numbers 
outside the range of         ?2π/a

x

un

un

x
a

7 2 84 7 1.1474 7
4

aa k a a a
π π πλ λ= ⇒ = ⇒ = = =

7 2 63 7 0.8573 7
3

aa k a a a
π π πλ λ= ⇒ = ⇒ = = =

22 ;a k k a
π πλ λ= = ⇒ =

White line :

Green line :

0 л/a 2л/a–л/a kk

C AB

0

ω

•The points A and C both have same
frequency and same atomic displacements

•They are waves moving to the left.

•The green line corresponds  to the point B
in dispersion diagram.

•The point B has the same frequency and 
displacement with that of the points A and 
C with a difference. 

•The point B represents a wave  moving to 
the right since its group velocity (dω/dk)>0.

•The points A and C are exactly 
equivalent; adding any multiple of 
2π/a to k does not change the 
frequency and its group velocity, 
so point A has no physical 
significance.

un

xa

x

un

Consider that k’s range over all reciprocal space,

All the information is in the first Brillouin zone : 
the rest is repeated with periodicity 2π/a –that is, the 
frequencies are the same for ω(k) and ω(k+G) where G is 
any reciprocal lattice vector

Group velocity of vibration wave

At the BZ boundary,

Zero group velocity
�fundamentally different from elastic wave in a continuum
�any wave (vibration or others) is diffracted if k is on the zone boundary
�leads to standing wave with zero group velocity

More complicated lattices

1st and 2nd nearest neighboring couplings in 1D monatomic chain

Two dimensional monatomic rectangular lattice

How about two atoms per primitive basis in one 
dimension?
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Chain of two types of atom
Two different types of atoms of masses M and m are 
connected by  identical springs of spring constant C;

Un-2
Un-1 Un Un+1 Un+2

K K K K
M Mm Mm a)

b)

(n-2)                  (n-1)                  (n)                    (n+1)              (n+2)

a

This is the simplest possible model of an ionic crystal.
Since a is the repeat distance, the nearest neighbors 
separations is a/2

• We will consider only the first neighbour interaction 
although it is a poor approximation in ionic crystals 
because there is a long range interaction between the 
ions.

• The model is complicated due to the presence of two 
different  types of atoms which move in opposite 
directions.

Our aim is to obtain ω-k relation for diatomic lattice

Two equations of motion must be written;

One for mass M1, and
One for mass M2.

M1 M2 M1 M2 M1

Us-2
Vs-1 Us Vs Us+1

1D diatomic lattice

)2()( 112

2

1 sssssss
s uvvCvuuvC

dt
udM −+=+−−= −−

)2()( 112

2

2 sssssss
s vuuCuvvuC

dt
vdM −+=+−−= ++

Equation of motion for  mass M1 (sth):
mass x acceleration = restoring force

Equation of motion for mass M2 (sth):

M1 M2 M1 M2 M1

Us-2
Vs-1 Us Vs Us+1

Offer a solution for the mass M1

saxtkxiutu sss =−=        where)](exp[)( ω

For the mass M2

saxtkxivtv sss =−=        where)](exp[)( ω

saxtkxiutu sss =−=        where)](exp[)( ω

)2()( 112

2

1 sssssss
s uvvCvuuvC

dt
udM −+=+−−= −−

saxtkxivtv sss =−=        where)](exp[)( ω

)2()( 112

2

2 sssssss
s vuuCuvvuC

dt
vdM −+=+−−= ++

saxtkxiutu sss =−=        where)](exp[)( ω

saxtkxivtv sss =−=        where)](exp[)( ω
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The two roots are;
2

1,2
4

2
b b acx

a
− ± −

=

Dispersion relation

Two branches 
correspond to 
±signs of 
dispersion relation

Upper branch is due to the
+ve sign of the root.

Lower branch is due to the
-ve sign of the root.

Optical Branch

Acoustical Branch

0 л/a 2л/a–л/a k

ω
A

B
C

• As there are two values of ω for each value of k, the 
dispersion relation is said to have two branches;

• The dispersion relation is periodic in k with a period  
2 π /a = 2 π /(unit cell length).

• This result remains valid for a chain of containing an 
arbitrary number of atoms per unit cell.
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Review

a a

Us-1 Us Us+1

1D Monoatomic chain

2
sin4 ka

M
C

=ω

[ ] satkxiAtu ss =−= s  x   where)(exp)( ω

2

0 л/a 2л/a–л/a kk

C AB

0

ω

max 2

/ks

C
m

V

ω

ω

=

=

vk

kCaka
M
Cka

M
C

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=≈

λ
ω

2
4

Long wavelength limit 

3

1D diatomic lattice

M1 M2 M1 M2 M1

Us-2
Vs-1 Us Vs Us+1

4

Upper branch is due to the
+ve sign of the root.

Lower branch is due to the
-ve sign of the root.

Optical Branch

Acoustical Branch

0 л/a 2л/a–л/a k

ω
A

B
C

5

1.  For a small k (ka<<1) long wavelength limit (λ>>a)

sin (ka/2) ~ ka/2

6
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7

2. At BZ boundary k=±π/a: sin (ka/2) ~ ±1

8

M1>M2

Gap

9

3. How about M1=M2

)cos(12 ka
M
C

−=ω

10

4. Amplitude of adjacent atoms

1) k=0

Acousitic branch   ω=0

1=
v
u

optical branch

1

2

M
M

v
u

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

21

112
MM

Cω

11

1

2
M
C

=ω

2) k=π/a

Acousitic branch

0=v

optical branch
2

2
M
C

=ω

0=u

12

Transverse optical mode
for diatomic chain 

Amplitude of vibration is strongly exaggerated! 

Transverse acoustical 
mode for diatomic chain 
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Periodic boundary conditions (Born-Karman)

So far, ω and k are continuous except that,

• k is restricted in the first BZ (discrete of lattice spacing)
• ω is forbidden in some gaps (splitting of acoustic and optical modes) 

Additional quantization effects:

k is quantized by finite crystal size.

Energy of vibration mode is quantized by quantum effect.

Real crystal size Finite crystal size

different

15

Born-Karman:
There are infinite crystals out of finite crystal, 

and the motion of atoms are identical inside each 
crystal.

For example:

N atom form a cirque, 
which make all atoms to be 
equivalent.

The motion of atom can 
be seen as linearity, due to 
numbers of atoms are large.

16

Eg. 1D monatomic chain 

N+1 atoms1 atoms

nnN uu =+
][])[( tnakitaknNi AeAe ωω −−+ =

1=iNake hNak π2=

a
k

a
ππ

≤<−

2
,1

2
,2

2
,0,3

2
,2

2
,1

2
NNNNNNh −−+−+−+−= LL

⎟
⎠
⎞

⎜
⎝
⎛=

Na
hk π2

discrete !

N=20, k=h(2π/20a)=(h/10)(π /a ) only 20 modes are allowed.

17

Each k has a corresponding ω,

quantized energy of vibration mode

what is the energy associated w/. This mode?

Some quantum systems:
photons:   k=2π/λ photon energy E=hω

mode energy E k,ω= nk(hω)ω=ck

Number of photon at (k,ω)A particle in a box:

18

Phonon: particle-like properties

Not a real momentum !

eg. k≠0, corresponding to relative motions of atoms around the equilibrium

What is the real momentum? Physical momentum

eg. k=0, corresponding to translation of the whole crystal
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19
ni is determined by excitation (thermal, acoustic, etc..)

Lattice vibrations
Specifying the vibrational states of the crystal by specifying 
number of phonon in each state ki

(k i,ω) is determined by structure and binding

20

Simple harmonic oscillator:

PHONONS: quantized lattice vibrations 

Lattice vibrations:

can be thought as particles interact with other 
electrons, phonons, etc…

Phonons:

21

Determination of phonon structure :

Primary tool for obtaining phonon dispersion relation
Neutron scattering –neutrons only scatter off atoms, not electrons

22

Experimental measurements of dispersion curves

• Dispersion curves ωas a function are measured by inelastic diffraction

• If the atoms are vibrating then diffraction can occur with energy loss 
or gain by scattering particles 

• In principle, can use any particle –neutrons from a reactor, X-rays 
from a synchrotron, He atoms which scatter from surfaces, …

Neutrons are most useful for vibrations 

For λ~ atomic size, energies ~ vibration 
energies

23

Experimental setup

24
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25

Homework

4-1 Monatomic line lattice.

4-3 Basis of two unlike atoms.

4-5 Diatoms chain

4-6 Atomic vibrations in metal.



1

1

Review

1. Vibrations of crystal with monatomic basis

2
sin4 ka

M
C

=ω
Dispersion relation

2

3

2. Brillouin zone

Diffraction condition

Start at reciprocal lattice
Bisect all G vectors with planes
Enclosed volume is Brillouin zone 

Brillouim zone surface describes all k 
vectors that are constructively 
diffracted by the crystal. 

4

3. 1D diatom lattices

5

Optic ((3p-3)N): LO (longitudinal)
TO(transverse)

4. In three dimensions

Acoustic (3N) : LA (longitudinal)
TA1(transverse)
TA2(transverse)

p atoms per primitive cell

3pN vibration branchesN primitive cell

Optic (3p-3) : LO (longitudinal)
TO(transverse)

Acoustic (3) : LA (longitudinal)
TA1(transverse)
TA2(transverse)

3p vibration branches

6

s
phonon

hE ν
λ

=

PHONONS 
• Quanta of lattice 

vibrations
• Energies of phonons are 

quantized

~a0=10-10m

phonon
hp
λ

=

PHOTONS 
• Quanta of electromagnetic 

radiation
• Energies of photons are 

quantized as well

photon
hcE
λ

=

~10-6m

photon
hp
λ

=

5. phonon

s
phonon

hE ν
λ

=

PHONONS 
• Quanta of lattice 

vibrations
• Energies of phonons are 

quantized

~a0=10-10m

phonon
hp
λ

=

photon
hcE
λ

=

~10-6m

photon
hp
λ

=

PHONONS 
• Quanta of lattice 

vibrations
• Energies of phonons are 

quantized

~a0=10-10m

phonon
hp
λ

=

photon
hcE
λ

=

~10-6m

photon
hp
λ

=
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Ideal gas Lattice atom

8

•Atoms vibrate about their equilibrium position.

•They produce vibrational waves.

•This motion is increased as the temperature is 
raised.

In a solid, the energy associated with this vibration and 
perhaps also with the rotation of atoms and molecules is 
called as thermal energy.

Note: In a gas, the translational motion of atoms and 
molecules contribute to this energy.

9

Therefore, the concept of thermal energy is fundamental to an 
understanding many of the basic properties of solids. We would 
like to know:

•What is the value of this thermal energy?

•How much is available to scatter a conduction electron in a 
metal; since this scattering gives rise to electrical resistance.

•The energy can be used to activate a crystallographic or a 
magnetic transition.

•How the vibrational energy changes with temperature since this 
gives a measure of the heat energy which is necessary to raise 
the temperature of the material.

10

Chapter Five 
Phonons II. Thermal Properties

• Phonon heat capacity
• Anharmonic crystal interactions
• Thermal conductivity

11

The energy given to lattice vibrations is the  dominant 
contribution to the heat capacity in most solids. In non-
magnetic insulators, it is the only contribution.

Other contributions;

•In metals from the conduction electrons.

•n magnetic materials from magneting ordering.

Heat capacity from Lattice vibrations

12

Phonon heat capacity

Phonons: 

dominate thermal properties
of materials and affect the 
electrical transports of 
conductors by scatterings of 
electrons
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External perturbations–vibrations or sound 
transducer

Scattering of particles–energy transferred into 
lattice vibrations

Thermal (KBT)–excited at any finite temperature 
(T≠0K)

Phonon generations:

How are phonons created or excited in a crystal?

14

Thermal phonons : 

consider a system with energy level En

Probability of occupancy

at temperature T

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∝

Tk
EEP
B

n
n exp)(

“Boltzmann factor”

15

Mode k, ω

Excitation level amplitude (n)   w/. Energy ωh⎟
⎠
⎞

⎜
⎝
⎛ +

2
1n

Average of phonons

∑

∑
∑
∑

⎟⎟
⎠

⎞
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⎝

⎛
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⎠
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⎛
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∑
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⎝
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16

( )

( )∑
∑

−

−−
=

s

s

sx

sx
dx
d

exp

exp

Tk
x

B

ωh
=Where

xe−−1
1

( )
1exp

1,
−⎥

⎦

⎤
⎢
⎣

⎡
=

Tk

Tn

B

ω
ω

h

Planck distribution of ( )Tn ,ω

average # of phonons excited 
per mode at ω

n

17

High T ( )ωh>>TkB

ω
ω

h

TkTn B~),( >

Low T ( )ωh<TkB

⎟
⎠
⎞

⎜
⎝
⎛−>

ω
ω

h

TkTn Bexp~),(

18

i

e

i
inU ωh∑=

mod

Thermal energy

( ) ( ) ωωωω hnDd∫=

( )
1exp −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∫

Tk

Dd

B

ω
ωωω
h

h

density of modes

thermal equilibrium
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Density of states (modes) : uniform in k-space
1D    D(k)≡density of states = number of states per unit k at k

D(k)dk number of states from k to k+dk
A linear chain of length L carries N+1 particles with separation a. 

1. Boundary condition : u0(t)=0 and uN(t)=0  fixed points

s=0 s=N

us(t)=u exp[-iωk,pt] sin(ska) 

where L
N

LLLL
k πππππ )1(,...4,3,2, −
=

20

Why is there no Nπ/L for allowed k? 

One mode for each interval

The number of modes per unit range of k

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤
=

a
kfor

a
kforL

kD
π

π
π

0
)(

0)sin(sin)( ==⎟
⎠
⎞

⎜
⎝
⎛∝ ππ s

L
asNtus No motion at all.

21

2. Unbounded medium but w/. periodic solution over the distance L

Periodic boundary conditions u(sa)=u(sa+L) 
for a large system

us(t)=u exp[ i(ska-ωk,pt) ] where ,....6,4,2,0
LLL

k πππ
±±±=

One mode for each interval 

L
k π2
=Δ

The number of modes per unit range of  k

a
k

a
LkD ππ
π

≤≤−= for
2

)(

otherwise0=

22

kdkLdkkD offor2and
2

)( ±=
π

ω
ω

ωω d
d
dkkDdkkDdD )(2)(2)( ==

The number of modes per unit frequency range

Singularity at vg=0, determined by ω(k)

gv
kD

dkd
kD

d
dkkDD )(2

/
)(2)(2)( ===

ωω
ω

Dispersion relation

Van Hove Singularity

23

One dimensional monatomic lattice 
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1

( )
1exp

1,
−⎥

⎦

⎤
⎢
⎣

⎡
=

Tk

Tn

B

ω
ω

h
Planck distribution of ( )Tn ,ω

average # of phonons excited 
per mode at ω

Thermal energy

i

e

i
ipK

K p
pK nnU ωω hh ∑∑∑ ==

mod

,,

( ) ( ) ωωωω hnDd∫=

2

( )KD

Density of states (modes)( )ωD

D(k)≡density of states = number of states per unit k at k

0 л/a 2л/a–л/a kk

C AB

0

ω

1D

3

Density of States

D(k)≡density of states = number of states per unit k at k

There are two sets of waves for solution;
Running waves
Standing waves

4

Standing waves:

Boundary condition : u0(t)=0 and uN(t)=0  fixed points

s=0 s=N

us(t)=u exp[-iωk,pt] sin(ska) 

Nka=nπ k=nπ/L

k
0

L
π 2

L
π 3

L
π L

N
LLLL

k πππππ )1(,...4,3,2, −
=

5

One mode for each interval

The number of modes per unit range of k

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤
=

a
kfor

a
kforL

kD
π

π
π

0
)(

6

Running waves:

Periodic boundary conditions u(sa)=u(sa+L) 

us(t)=u exp[ i(ska-ωk,pt) ] 

0 2
L
π2

L
π

−
4
L
π4

L
π

−
6
L
π

k

,....6,4,2,0
LLL

k πππ
±±±=
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One mode for each interval 
L

k π2
=Δ

The number of modes per unit range of  k

a
k

a
LkD ππ
π

≤≤−= for
2

)(

otherwise0=

8

DOS of standing wave

DOS of running wave

•The density of standing wave states is twice that of the running waves. 

•However in the case of standing waves only positive values are 
allowed

•Then the total number of states for both running and standing waves 
will be the same in a range dk of the magnitude k

•The standing waves have the same dispersion relation as running 
waves, and for a chain containing N atoms there are exactly N distinct 
states with k values in the range 0 to      ./aπ

These allowed k’s are uniformly distributed between k and k+dk

dkLdkkDs π
=)(

dkLdkkDs π2
)( =

9

kdkLdkkD offor2and
2

)( ±=
π

ω
ω

ωω d
d
dkkDdkkDdD )(2)(2)( ==

The number of modes per unit frequency range

Singularity at vg=0, determined by ω(k)

gv
kD

dkd
kD

d
dkkDD )(2

/
)(2)(2)( ===

ωω
ω

Dispersion relation

Van Hove Singularity

The density of states per unit frequency range g(ω):

• The number of modes with frequencies ω and ω+dω will be g(ω)dω.
• g(ω) can be written in terms of D(k).

10

Let’s remember dispertion relation for 1D monoatomic lattice

Let’s remember dispertion relation for 1D monoatomic lattice

2 24 sin
2

K ka
m

ω =

dk
dω
dk
dω

d
dk
ω 2 cos

2 2
a K ka

m
= cos

2
K kaa
m

= 1

cos
2

K kaa
m

1 1

cos
2

m
kaa K ⎛ ⎞

⎜ ⎟
⎝ ⎠

)(2)( kDD =ω

2 sin
2

K ka
m

ω =

)(2)( kDD =ω

11

( )D Naω
π

=

( )
1 1

cos / 2
m

a K ka
2cos 1 sin

2 2
ka ka⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
2 2 2sin cos 1 cos 1 sinx x x x+ = ⇒ = −

2

1 1 4
4

1 sin
2

m
a K ka⎛ ⎞− ⎜ ⎟

⎝ ⎠

Multibly and divide

2

1 2
4 4 sin

2
a K K ka

m m
⎛ ⎞− ⎜ ⎟
⎝ ⎠

Let’s remember:

( )D Lω
π

=
2 2
max

2 1
a ω ω−

L Na=

2
max

4K
m

ω =

2 24 sin
2

K ka
m

ω ⎛ ⎞= ⎜ ⎟
⎝ ⎠( ) 2D Nω

π
= ( ) 1/ 22 2

maxω ω
−

−

True density of states

)(2)( kDD =ω

)(2)( kDD =ω

)(2)( kDD =ω dkLdkkD
π2

)( =

12

ω

N m
Kπ

max 2 K
m

ω =

True density of states by 
means of above equation

( ) 1/ 22 2
max

2( ) Ng ω ω ω
π

−
= −

True DOS(density of states) tends to infinity at                ,

since the group velocity               goes to zero at this value of     .

max 2 K
m

ω =

ω/d dkω

( )g ω

Total number of modes 

∫ ∫∫ =====
−

max

0

4

0

/

/

)()(2
2

)(
ωπ

π

ωωωωπ
π

M
C

a

a

dDdDN
a

LdkkDN
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In two dimensions : 

periodic boundary condition, N2 primitive cells within a square of side L 

exp[ i(kxx+kyy) ] = exp[ i( kx(x+L) + ky(y+L) ) ]

whence ,...6,4,2,0,
LLL

kk yx
πππ

±±±=

The number of modes in k-space 2

22

4
21

π
π L
Lkk yx

=⎟
⎠
⎞

⎜
⎝
⎛=

ΔΔ

−

One mode for each interval 
22
⎟
⎠
⎞

⎜
⎝
⎛=ΔΔ

L
kkx

π

14

Number of modes with wave vector from k to k+dk in k-space 

kdkLdkdk
kk

dkkD yx
yx

π
π

2
4

1)( 2

2

=
ΔΔ

=

The number of modes per unit frequency range 

gv
kA

dkd
kDD 12

4/
)()( 2 π

πω
ω ==

In three dimensions :
gv

kV
dkd

kDD 14
8/

)()( 2
3 π

πω
ω ==

complicated ! --must map out dispersion relation and count all k-
values with each frequency 

15

Continuum waves : 

ω= vgk depending only on amplitude of k 

kdkDdD 3)()( =ωω

dkkV 2
3 4

8
π

π
=

gg v
d

v
V ωω
π

2

22 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

ωω
π

d
v

V

g

3

2

22
=

The number of modes per unit frequency range for each polarization 

3

2

22
)(

g
v

VD ω
π

ω = a quadratic dependence !

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

3
4

2

33 KLN π
π

16

Quadratic at low ω

N primitive cells in the crystal,
A total number of acoustic phonon mode is N for each polarization.

Cutoff frequency

Cutoff wave vector

3/1326
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

V

Nv
g

D

π
ω

3/126
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

V
N

v
k

g

D
D

πω

17

Thermal energy ∫= ωωωω h)()( nDdU

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫

1exp
20

32

2

Tk
v

Vd

B

g

D

ω
ω

π
ωω

ω

h

h each polarization

There are three polarizations : 2 transverse + 1 longitudinal

∫
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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D

Tk
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VU

B

g

ω

ω
ωω

π 0

3

32

1exp
2
3

h

h

( )∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎠
⎞

⎜
⎝
⎛=

Dx
B

g x
xdxTk

v
V

0

34

32 1exp2
3

h

h

π

Tk
x

B

ωh
=

18

Defining the Debye temperature Θ D

In classical model : equipartition theorem (0.5kBT for each excitation mode) 
3 translational + 3 vibrational modes : six degrees of freedom 
U= N 6 (0.5kBT) = 3NkBT for N atoms in the crystal 
Cv= 3NkB Dulong and Petit Law

Peter Debye, 1884-
1966 1936 Nobel prize 
winner in chemistry

3/12
3/132 66

⎟⎟
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⎜⎜
⎝

⎛
=⎟

⎟
⎠
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⎜
⎜
⎝
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==Θ

V
N

k
v

V
Nv

kk B

gg

BB

D
D

ππω hhh

Therefore xD= hωD/kBT= ΘD/TThe

The total phonon energy 

( )∫
Θ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
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⎛
Θ

=
T

D
B

D

x
xdxTTNkU

/

0

33

1exp
9



4

19

1/ <<Θ= TxD

20

Einstein model(1907) : N identical oscillators of frequency ω

At high T, CV→3NkB same as the Dulongand Petitvalue

At Low T, CV→ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
TkTk

Nk
BB

B
ωω hh exp3

2

i

e

i
ipK

K p
pK nnU ωω hh ∑∑∑ ==

mod

,,

21 22

Diamond,

Experimental data –red points

Einstein’s model –blue curvew/. 

ΘD=1320K

Ann. Physik 22, 180 (1907)

Einstein theory shows correct trends with temperature.

For simple harmonic oscillator of spring constant C and mass M,
M
C

=ω

23

At low T, there are systematic deviations between data and Einstein model.
Einstein realized that the oscillations of a solid where complex, 

far from single frequency.

By Walther Nernst

Key point is that however low the temperature, there are always some 
modes with low enough frequencies to be excited.

Einstein model : At low T, CV →3NkB (ħω/kBT)2exp(-ħω/kBT)
Experimental data show T3 dependence of CV instead

24

Debye and Einstein models

In the Einstein model, C decreases too rapidly at low temperatures.
Debye model gives correct T3 dependence of C at low T. 

Red points : Experimental 
data of Ag

ΘD=225K
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Review

Cv U

i

e

i
inU ωh∑=

mod
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⎞
⎜⎜
⎝
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In three dimensions :
gv

kV
dkd
kDD 14

8/
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πω
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ωω
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Cutoff frequency

Cutoff wave vector
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πω

N primitive cells in the crystal,

A total number of acoustic phonon mode is N for each polarization.

N=∫∫
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0 2
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1exp
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/
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43

)1e(
e9

3NkBTU

CV
3NkB

4

Einstein model(1907) : N identical oscillators of frequency ω

At high T, CV→3NkB same as the Dulongand Petitvalue

At Low T, CV→ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
TkTk

Nk
BB

B
ωω hh exp3

2

i
i

ipK
K p

pK nnU ωω hh ∑∑∑ ==
mode

,,

5

Diamond,

Experimental data –red points

Einstein’s model –blue curve 

ΘD=1320K
Ann. Physik 22, 
180 (1907)

6

The Discrepancy of Einstein model

• Einstein model also gave correctly a specific heat 
tending to zero at absolute zero, but the 
temperature dependence near T=0 did not agree 
with experiment.

• Taking into account the actual distribution of 
vibration frequencies in a solid this discrepancy 
can be accounted using one dimensional model 
of monoatomic lattice
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DebyeT3model

Number of phonon mode for each polarization is equal to N 

Assume continuum elastic phonon mode only up to some cutoff ωD
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⎨
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32
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Debye frequency

Debye wave vector

Debye temperature
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ωD, ΘD depend on vg, n, ~ vgn1/3

High for stiff, light materials 
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DebyeT3approximation
10

T3 observed in most 
insulators for T<0.1ΘD

• Only long wave length acoustic modes are thermally excited.
• These modes can be treated as an elastic continuum.
• The energy of short wave length modes is too high for them to 

be populated significantly at low temperatures.

solid Ar w/. ΘD=92K

Why T3 at low temperatures ?

11

The Debye approximation has two main steps:

1. Approximate the dispersion relation of any branch 
by a linear extrapolation of the small k behaviour:

Einstein 
approximation 
to the 
dispersion

Debye 
approximati
on to the 
dispersion

12

2. Ensure the correct number of modes by imposing 
a cut-off frequency ωD , above which there are no 
modes. The cut-off freqency is chosen to make the 
total number of lattice modes correct.
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Other simple idea to understand T3dependence :

Total phonon mode :

Excited phonon mode Thermal wavevector

Others are frozen out 

Fraction excited at T : 
33

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Θ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

DD

T T
k
k

of the total volume in k-space
Each mode has energy kBT

too small but correct T3 dependence

~ T3

14

R

r R

V(R)

0 R0

Repulsive

Attractive

1. Any real crystal 
resists compression to 
a smaller volume than 
its equilibrium value 
more strongly than 
expansion due to a 
larger volume.

2. This is a departure 
from Hooke’s law, 
since harmonic 
application does not 
produce this property.

15

The harmonic theory

1. In harmonic approximation phonons do not interact 
with each other, in the absence of boundaries, lattice 
defects and impurities (which also scatter the 
phonons), the thermal conductivity is infinite.

2. No thermal expansion

3. The heat capacity becomes constant at high 
temperatures

The anharmonic effects

( )2 2

2( ) ( ) ....................
2 r a

r a d VV r V a
dr =

− ⎛ ⎞
= + +⎜ ⎟

⎝ ⎠

16

Transport properties (non-equilibrium)

Conduction of sound and heat through the crystal 

vibration

Ultrasonic attenuation 

excite single phonon mode
measure decay of amplitude

energy 

Thermal conduction 

apply temperature gradient 
measure heat current by phonons 

17

Phonon thermal conductivity 

Apply temperature gradient ∇T →determine heat current density jU

The flux of the thermal energy

the energy transmitted across unit 
area per unit time

dx
dTjU κ−=

r

κ: thermal conductivity coefficient

18

In solids, heat is transported
by phonon and free electrons.

For metals, it is electronic 
contribution that dominates 
the thermal conductivity.

This does not mean that 
insulators are necessarily 
poor thermal conductors.
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Propagations of phonons ?

No interaction/scatteringBallistic

In harmonic approximation in perfect, infinite crystal,

Expect no scattering →phonon modes are uncoupled, 
independent plane waves and 
standing waves

dk
dvv g
ω

==

20

Diffusion Phonons scatter, random walk through crystal 

Phonons scatter in real crystals.

Scattering processes : boundary scattering
defect scattering
phonon-phonon scattering

dk
dvv g
ω

=<<

The flux of thermal energy is based on that 
the process of thermal energy transfer is a random process.

ie. the energy diffuses through the crystal, suffering frequent collisions.

21

Ballistic :

Diffusive :

TJU Δ∝
r

dx
dTTJU =∇∝

r

across the whole sample

local 

For diffusion, thermal conductivity is defined by

( )T
jU
∇−

≡ v

r

κ

jU[Watt/m2], κ[(Watt/m2)/(K/m)] = [Watt/m/K]

phonon properties
Scattering 
crystal quality (size, defect)
temperature

22

κ Kinetic theory of gases

consider phonons as gases contained in a crystal volume 

calculate diffusion in the presence of temperature gradient

Fick’s law

dx
dT

dT
dn

dx
dn

=

23

n : concentration of molecules
C : heat capacity per unit volume = nc
vg: phonon velocity
l  : phonon mean free path =vgτ

xldx
dTT =Δ

thermal energy  per unit volume across unit area

)1()( =⋅Δ−= tvTCj xU

dx
dTvC

dx
dTcvnj

gxU ττ 22

3
1

−=−=

dx
dTlCvj gU 3

1
−=

Average value

22

3
1

gvv
x
=

xl

24

dx
dTlCvj gU 3

1
−= ( )T

jU
∇−

≡ v

r

κ

lCvg3
1

=κ

thermal conductivity

l∝κ
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Review

thermal conductivity

thermal expansion

Problem:

Phonon thermal conductivity 

The flux of the thermal energy
dx
dTjU κ−=

r

Propagations of phonons ? Diffusion

Scattering processes : boundary scattering
defect scattering
phonon-phonon scattering

lCvg3
1

=κthermal conductivity

lCvg3
1

=κ

Thermal expansion
From anharmonic terms in binding potential

U(r)

x
x0

The general shape applies for any type of binding
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Reset the equilibrium, 
let displacement x-xo x

...)( 432 fxgxcxxU −−=

harmonic term anharmonic term

U(r)

x

thermal energy causes fluctuation of x from xo

anharmonic term gives the net change of <x>
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--Thermal expansion
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1exp

...
!3!2

1
32
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xxxex

Tk
C
gx B24

3
= linear dependence of T

high T limit

Using

Coefficient of linear expansion

dx
dTlCvj gU 3

1
−=

lCvg3
1

=κthermal conductivity

Phonon thermal conductivity 

xldx
dTT −=Δ

xl

TjU ∇−≡
vr

κ

The mean free path l defect scattering

phonon-phonon scattering

Phonon-phonon scattering 
phonon displaces atom 

which changes the force constant C (anharmonic terms)
scatter other phonons three phonon process

phonon1

phonon2

1 1,kω

2 2,kω

3 3,kω

After collision another phonon 
is produced

3 1 2?k k k= +h h h

3 1 2ω ω ω= +h h h conservation of energy

conservation of momentum ?

Umklapp processes : k3 is outside BZ 

1st BZ in 
k-space

R. Peierls, Ann. Physik3, 1055 (1929)
crystal momentum is not conserved

Gkkk

kGk

kkk

rrrr

rrr

rrr

+=+

=+

=+

321

*
33

*
321

outside BZ

Normal processes : all k3 are in BZ 

1st BZ in k-
space

crystal momentum is conserved

321 kkk
rrr

=+

U-processes occur at high temperatures : require large k (ie. large ω)

How large ? 

At very low temperatures, phonons are populated at low k 
mode U process can not occur

Phonon-phonon scattering: rate l -1∝ # of phonons involved
U-process : l-1∝NU ~ exp(-ΘD/2T)(phonons w/. large k only)at 
intermediate temperatures

( )
1exp

1,
−⎥

⎦

⎤
⎢
⎣

⎡
=

Tk

Tn

B

ω
ω

h
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Thermal conductivity of LiF crystal bar w/. different cross sectional areas

1.Below 10K, κ∝T3

2.As temperature increases, κincreases 
and reaches a maximum around 18K.

3.Above 18K, κdecreases w/. increasing 
temperature and follows that exp(1/T).

4.Cross sectional area influences 
κbelow 20K. Bigger area crystal has, 
larger κit has.

Data show Solids are defined by their capacity to be solid 

–to resist shear stress

A crystal is truly solid (as opposed to a glass which is just a 
“slow liquid”)

Crystalline order is defined by the regular positions of the nuclei 

crystal structure = lattice + basis

Lattice and reciprocal lattice 

Diffraction and experimental studies 

Brillouin zone 

Crystal binding 

Type of binding

Summary of part (I)

Vibrations of atoms 

Harmonic approximation

Quantization of vibrations 

phonons act like particles

--can be created or destroyed by inelastic scatterings

Thermal properties 

Fundamental law of probabilities

Planck distribution for phonons

Heat capacity : C

Low T, C ∝T3 and High T, C ~ constant

Thermal conductivity : κ

maximum as function of T

Summary of part (I)

Homework
5.1
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History of solid electron theory

In 1897, J. J. Thomson

Discovered  electron

In 1900, P. Drude

Classic free electron gas

In 1925, E. Fermi and W. Pauli
Pauli exclusion principle

Fermi Dirac statistics

History of solid electron theory

In 1928, A. Sommerfel

Quantum free electron gas

Debby, Heisenberg, Pauli, Bethe

In 1928, F. Bloch

Bloch theory     energy band

In 1963, W. Kohn

Density functional theory

Chapter Six 
Free Electron Fermi Gas

• Energy levels in one dimension
• Free electron gas in three dimension
• Effect of temperature on the Fermi-Dirac

distribution
• Heat capacity of the electron gas
• Electron conductivity and Ohm’s law
• Motion in magnetic field
• Thermal conductivity of metal

What determines if the crystal will be a 
metal, an insulator, or a semiconductor ?

In a theory which has 
given results like these, 
there must certainly be a 
great deal of true.

---H.A. Lorentz
Hendrik A. Lorentz
The Nobel Prize in Physics 1902

Band structures of solids 

Band structures of solids 

Eg Eg

Conduction band 
partially filled 

Valence band filled /Conduction band empty
Eg<kBT Eg>>kBT

Conduction electrons 
are available 

Conduction electrons 
are available
at high T or by doping 

No conduction 
electrons

Metal semiconductor Insulator 

Basic idea : pushing atoms together to form a crystal

discrete energy levels splitting of levels band of states 
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• Low energy levels remain discrete and localized on atoms. 
Core states

• High energy levels split to form bands of closely energy 
levels that can extend through the crystal
valence and conduction bands

• This mobile electron becomes a conduction electron in a 
solid.

• The charge density associated the positive ion cores is 
spread uniformly throughout the metal so that the electrons 
move in a constant electrostatic potential. All the details of 
the crystal structure is lost when this assunption is made.

• this potential is taken as zero and the repulsive force 
between conduction electrons are also ignored.

crystal

+

+ + +

+ +

Free electron model
–treat conduction electrons as free particles

• Continuum states–density of states�
• Fermi statistics–occupancy of states�
• Thermal properties–Thermal energy, heat capacity, …
• Electrical and thermal transports–scatterings of 

conduction electron�
• Magnetic field effect

The models of Drude and Sommerfeld free electron gas

Free conduction electrons in the box

Not interacting 
electrons(except w/. walls of 
the box)

Tk
m
k

m
pEK B2

3
2

)(
2

..
22

====
hε

Ions – steady Coulomb interaction (electron binding)
But�

• Screening by core electrons weakens the attraction at 
large distance�

• Pauli exclusion principle requires that conduction 
electrons stay away from core electrons localized at the 
atoms. 

In reality, interactions of electrons :

Electrons – strong Coulomb repulsion
But

• Coulomb repulsion
• Pauli exclusion principle 

Electrons tend to stay apart

In one dimension 
U(x)= 0   0 ≤x ≤L

∞ elsewhereSchrödinger equation 

U-> ∞
m

Ψ=Ψ+Ψ− ε)(
2 2

22

xU
dx
d

m
h

Boundary condition

0)()0( == Lnn ϕϕ

)sin( xkA nn =ϕ
L

nkn
π

= 2

222

2
)(

2
)(

mL
n

m
kn πε hh

==W\. and

How to accommodate N electrons on the line ?

Start to fill the levels from 
the bottom (n=1) and continue 
to fill higher levels with 
electrons until all N electrons 
are accommodated.

Pauli exclusion principle+ 
spin degeneracy 

(two spins↑↓per level)

1,…, nF, where nF is the value of n for the uppermost filled level.
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In general cases, such as periodic chain 

Boundary condition 
One state every k-interval Δk=2π/L 

L
nkn
π2

±=)()( Lxx nn +=ϕϕ

dkd
L

d
dkkDD

dDdkkD

/
)2/(2)(2)(

)()(2

ε
π

ε
ε

εε

==

=

22 )(
2

2/
)2/(2)(

k
mLm

mk
LD

hhh π
πε ==

επ
1

2 h

Lm
=

and ε=ħ2k2/2m

singly spin density of states in 
one dimension

Density of states ππ 2)/2(
11)( L

Lk
kD

n

==
Δ

=

In three dimensions
Schrödinger equation

Ψ=Ψ+Ψ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

− ε),,(
2 2

2

2

2

2

22

zyxU
zyxm

h

Boundary condition : Ψ is periodic in x, y, and z with period L

One state every k-volume interval ΔkxΔkyΔkz=(2π/L)3

( )3
3

3 22)/2(
11)(

πππ
VL

Lkkk
kD

zyx

=⎟
⎠
⎞

⎜
⎝
⎛==

ΔΔΔ
=

( ) ( )
( )

ε
ε

π
π

πεε d
dkd

kVdkkkDdD
/
14

2
4 2

3
2 ==

( )
( )

ε
ε

π
ε

π
π d

mVd
k

mVk
3

3

223

2 2
42

4
hh

==

( ) ε
π

ε
2/3

22

2
4

⎟
⎠
⎞

⎜
⎝
⎛=
h

mVD
singly spin density of states in 
three dimensions 

Conduction electrons : free to move through the crystal 
Density of conduction electrons n = N/V 

typically n ~ 1022 ~ 1023cm-3

mostly “s”orbital electrons but also “p”and “d”

x 2 for spin degeneracy 

Difference between electrons and phonons

ω∝kε∝k2Dispersion

D(ω)∝ω2D(ε) ∝ ε1/2Density of 
states 

Bosons
(Planck distribution)
n per mode excited

Fermions 
(Fermi-Dirac statistics) 
two per orbital state ↑↓

Degeneracy

N ~ kBT varies w/. TN=nV fixed Number 

Electron Phonons

up to ωD Debye

Ground states T=0, Fill energy level from bottom : 2 per level ↑↓

εF

ε1

ε2

ε3

ε4

εn

highest level occupied w/. εF

Energy Maximum energy : εF = ħ2kF
2/2m

Fermi energy

How do we determine ground states ?



4

States w/. k ≤kFare occupied

Fermi sphere–volume in k-space occupied

by electrons in the ground states

Fermi surface–kF states w/. ε = εF

kz

ky

kx

kF

3/123
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

V
NkF

π
3/222 3

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

V
N

mF
πε h

typically, ~ 10-8cm-1 ~ 1 –10 eV

( )
electronsofVkN F #

23
42 3

3 ==
π

π

spin volume of 
Fermi sphere

D(k) 

3

3
4

Fkπ

and

n εF
TF

∫
∞

=
0

)()( εεε dfDN

∫=
F

dD
ε

εε
0

)(

( )
⎩
⎨
⎧

>
≤

=
εε
εε

ε
,0

,1 Ff

f(ε) is the probability that a 
state of energy ε is occupied

Fermi energy is important because electronic 
properties are dominated by states near εF only.

Fermi-Dirac distribution



1

1

Review
• Free electron mode

treat conduction electrons as free particles
• The potential well

επ
ε 1

2
)(

h

LmD =

In three dimensions ( ) ε
π

ε
2/3

22

2
2

⎟
⎠
⎞

⎜
⎝
⎛=
h

mVD

In one dimensions

2

• Ground states T=0, Fill energy level from bottom

ε1

ε2

ε3

ε4

εF

εn

highest level occupied w/. εF

Energy Maximum energy : εF = ħ2kF
2/2m

Fermi energy

3

Fermi sphere

Fermi surface–kFstates w/. ε = εF

kz

ky

kx

kF

3/123
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

V
NkF

π
3/222 3

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

V
N

mF
πε h

( )
electronsof#

23
42 3

3 ==
π

π VkN F
3

3
4

Fkπ

and

4

∫
∞

=
0

)()( εεε dfDN

∫=
F

dD
ε

εε
0

)(

( )
⎩
⎨
⎧

>
≤

=
εε
εε

ε
,0

,1 Ff

f(ε) is the probability that a 
state of energy ε is occupied

5

Finite temperatures

What is the probability of occupancy of 
an electron state?

What is free electrons contribution to 
heat capacity?

CV    ∝ T3    or Constant

6

Finite temperatures 

Kinetic energy of electron increases due to the 
increase of thermal energy 

occupy higher energy levels

What is the probability of occupancy of an 
electron state w/. energy εat T ?

Boltzmann factor exp(-ε/kBT) ? For phonons (Bosons)

Electrons are Fermions
-------quantum effects such as Pauli exclusion principle
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7

Standard problem in statistics 

• At T=0 μ=εF, when ε=μ=εF, f(ε) changes discontinuously
• At finite T, when ε= μ, f(ε)=1/2
• When (ε-μ) >> kBT, f(ε) Boltzmann distribution

Fermi-Dirac distribution

where μ is the chemical potential to conserve 
electron number.

( )[ ] 1/exp
1)(

+−
=

Tk
f

Bμε
ε

8

(1) 0 ≤f(ε,T) ≤1

(2) when T<0.1TF, μ≈εF, and f(ε,T)=1/2 when ε =EF 

when ε <μ, f(ε,T)>1/2 

when ε>μ, f(ε,T)<1/2

9

(3) Electrons excited from below εF to above εF as T is increased 

Δε ~ kBT

Spread energy region increases with increasing temperature.
10

(4) μ= μ(T) decreases as T increased 

why ?
What does determine μ? 

∫
∞

=
0

),()( TfDdN εεε ( )
( )( ) 1/exp

12
4 3

3

0
2 +−

= ∫
∞

Tk
mVdN

Bμε
ε

π
ε

h

Hence, ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

22

12
1

F

B
F

TkT
ε

πεμ

Total number of electrons is conserved

Homework :Calculate the μ(T) when temperature is finite.

11

(5) Useful expression for D(ε) 

( )
εε

πε
ε c

mV
d

dnD state === 3

3

2

2
4

)(
h

( ) ( )εεε fDdN ∫
∞

=
0

3

0 3
2

F
ccd

F

εεε
ε

== ∫

( )
33 2

3,
2
3

FF

NDNc
ε
εε

ε
== ( )

F
F

ND
ε

ε
2
3

=

T=0

where and

12

Total thermal energy and heat capacity of electrons at T 

Classical point of view, U = Ne(3kBT/2) and CV= Ne(3kB/2)

In reality, much smaller at room T

Not every electrons gains energy 3kBT/2
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( ) ( )εεεε TfDdU ,
0
∫
∞

=

At ground state, T=0

5

3
0

3 5
2

2
3

2
3

F

FF

NNdU
F

ε
ε

εε
ε

ε
ε

== ∫

F
N ε
5

3
=

Average energy of each electron < ε > = 0.6εF

14

At finite temperature (T≠0), electrons are excited to 
higher energy states and U(T) increases. 

The filled orbital at finite temperature

1

2

15

• Fermi-Dirac distribution function is a symmetric function; 
at finite  temperatures, the same number of levels below 
EF is emptied and same number of levels above EF are 
filled by electrons.

T>0

T=0

n(E,T)

E

g(E)

EF

16

Qualitative arguments

T>0

T=0

n(E,T)

E

g(E)

EF

When we heat the 
specimen from absolute 
zero not every electron
gains an energy ~kBT as 
expected classically.

energy range kBT of the Fermi level

NkBT/EFnumber of electrons excited

thermal energy of each electron 3/2kBT

total electronic thermal kinetic energy U~(NkBT/EF)kBT

electronic heat capacity Cel=dU/dT~3/2NkB(kBT/EF)

17

( ) ( ) ( ) ( ) ( )TUKUTfDdTU Δ+== ∫
∞

0,
0

εεεε

Total energy

( ) ( ) ( ) ( ) ( ) ( )( )εεεεεεεεεε
ε

ε

fDdfDdU
F

F

FF −−+−=Δ ∫∫
∞

1
0

( ) ( ) ( ) ( )εεεεεεε
ε

∫∫ −=Δ
∞ F

DdTfDdTU
00

,

First integral gives 
energy needed to take 
electrons from εF to the 
orbitals of energy ε> εF

Scend integral gives energy 
needed to bring electrons to 
εF from the orbitals of below
εF

18

Heat Capicity

( ) ( ) ( )
T

TfDd
dT
dUC Fe ∂

∂
−== ∫

∞ ,

0

εεεεε

( ) ( ) ( ) ( ) ( ) ( )( )εεεεεεεεεε
ε

ε

fDdfDdU
F

F

FF −−+−=Δ ∫∫
∞

1
0

In general, T/TF<0.01, df/dT has non-zero value within couples of kBT
D(ε) is about D(εF) in the energy regime εF±kBT

( ) ( ) ( )
T

TfdDC Fe ∂
∂

−= ∫
∞ ,

0
F

εεεεε
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19

( ) ( ) ( )
T

TfdDC Fe ∂
∂

−= ∫
∞ ,

0
F

εεεεε

( ) ( )2
2

/

2
F

1e
e
+

= ∫
∞

−
x

x

Tk
Be xdxTkDC

BFε

ε

( ) ( )2
22

F
1e

e
+

= ∫
∞

∞−
x

x

Be xdxTkDC ε

Ignore the variation of the chemical potential with temperature

20

( ) 31

2

2
2 π

=
+

∫
∞

∞−
x

x

e
edxx

( )

F
B

B
FB

BFe

T
TNk

Tk
Tk

NTkDC

2

2
22

2

2
1

2
3

33

π

ππε

=

==

T∝ Free electrons contribution to 
heat capacity 

21

In general, when T<<ΘD and T<<TF=εF/kB

C = γT + AT3  sum of electron and phonon contributions

22

F

B

T
Nk

2

2πγ = ∝ TF
-1 ∝ m (mass of electron)

mth, obtained from measured γ observed, is different from me.

Thermal effective mass )(
)(

free
observed

m
mth

γ
γ

=

23

• Interaction between conduction electrons with periodic potential of the 
crystal lattice.

------Band effective mass 
• Interaction between conduction electrons with phonons.

moving electrons drag nearby ions along
• Interaction between conduction electrons with themselves. 

A moving electron causes an inertial reaction in the 
surrounding electron gas. 

For some materials, mthcan be 1000me. Heavy Fermions 

such as CeAl3, CeCu2Si2,…and other exotic 
superconductors.

Three separate effect
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In general, when T<<ΘD and T<<TF=εF/kB

C = γT + AT3  sum of electron and phonon contributions

F
Be T

TNkC 2

2
1π=

F

B

T
Nk

2

2πγ =

∝ TF
-1 ∝ m (mass of electron) mth, obtained from measured γ observed, is different from me.

Thermal effective mass )(
)(

free
observed

m
mth

γ
γ

=

• Interaction between conduction electrons with periodic potential of the 
crystal lattice.

------Band effective mass 
• Interaction between conduction electrons with phonons.

moving electrons drag nearby ions along
• Interaction between conduction electrons with themselves. 

A moving electron causes an inertial reaction in the 
surrounding electron gas. 

For some materials, mthcan be 1000me. Heavy Fermions 

such as CeAl3, CeCu2Si2,…and other exotic 
superconductors.

Three separate effect Transport properties

coefficients

Applying TE ∇
rr

, UJJ
rr

,

driving field current density

Electric current density

Heat current density

EJ
rr

σ= ( )TLT ∇−+
r

( )TJU ∇−=
rr

κ ETLT

r
+

σ: electrical conductivity
κ: thermal conductivity
LT: thermal electric coefficient 

coupling both electric and thermal responses

Electrical conductivity and Ohm’s law
Applying an electric field E

r

Equation of motion ( )
dt
kd

dt
Pd

dt
vdmEeF

r

h

rrrr
===−= 2

2

At a constant E, ( ) ( )
h

r
rr tEektk −

=− 0

E shifts Fermi sphere in k-space
Each k increases by τδ

h

r
r Eek −
=

Electric field accelerates 
electrons k increases linearly

Current density 

k
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k
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What limits δk ?

scatterings 

Electrons can scatter 
to states of lower 
energy and reduce 
current.

unshifted
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( ) ( )
h

r
rr tEektk −

=− 0 τδ
h

r
r Eek −
=

Assume collision time is τ

E
m

neEe
m
enJ

r

h

r
hr ττ

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

k
m
enJ

rhr
δ−=

EJ
rr

σ≡And Ohmic devices

Electric conductivity 

Free electron modelm
ne τσ

2

=

@ In classical picture, all e−s carry charge –e at a constant velocity vd.

time

Approaches to a “steady state”value
non-equilibrium 

EE
m

ne
m
eEnenevJ d σττ

≡=
−

−=−=
2

tEek
h

r
r −
=δ

@ Only electrons near the Fermi surface contribute to current.δk<<kF

( )
( ) Fef

FeFf

k
kk

evnn

venevn

nveJ

+=

−−=

=∑ rrky

kx

kF newly filled nf

newly emptied ne all at vF
participating 

states

@ Current is carried only by a fraction of electrons traveling at vF.

Both newly filled and newly emptied states contribute same current.

nf electrons

ne holes 

Copper Cross sectional area 
A=wt Length l

R=ρl/A

ρ(300K)= 1.7μΩcm
n=8.45×1028 1/m3

vF= 1.57×106m/sec m
ne τσ

2

=

( ) mcoulombm
kg

ne
m

Ω×××

×
==

−−−

−

8219328

31

2 107.1106.11045.8
101.9στ

sec105.2 14−×=

nmmvl F 40104 8 =×== −τ

For E = 1 volt/cm vd~0.43 m/sec

Fraction of states 
participating

6102~2 −=≈
F

d

F v
v

k
k

n
n δδ

I

V

Electron scattering processes

Regime I
Large e-ph scatterings ρ(T) ∝T

Regime II
Small e-ph scatterings ρ(T) ∝T5

Regime III e-e scatterings ρ(T) 
∝T2

Regime IV impurity scatterings ρ(T) 
∝T0~ ρo

Conductivity σis limited by scatterings (τ, l)
for a perfect crystal, no scattering σ→∞

Scattering mechanisms

Two additional rules :
(1) Multiple scattering mechanisms

Matthiessen’s rule

not exact but pretty good

(2) Residual resistance ratio

RRR →∞, perfect crystal
In general, RRR ~ 102to 104 (pure metal)
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Experimental evidences for Matthiesen’s Rule

McDonald and Mendelssohn (1950).

Three different samples w/. different defect concentrations.

Motion in magnetic fields

Electric field 

Magnetic field 

Lorentz force ⊥motion direction

change magnitude of 

change direction of 

dt
kdEqF
r

h
rr
==

dt
kdBk

m
qBvqFB

r

h
rrhrrr
=×=×=

K
r

Example : zBB ˆ=
r

0=

−=

=

dt
dk

k
m
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dt
dk
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dt
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2
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2
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⎟
⎠
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⎜
⎝
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⎟
⎠
⎞
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⎝
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dt
dk
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dt
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dt
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z

y
y

x
x

( ) ( )
( ) ( )
( ) Ctk

tAtk
tAtk

z

cy

cx

=

=
=

ω
ω

sin
cos

Helical circular motion ⊥B
ωc=qB/m “cyclotron frequency”

Bvq
dt
kd rr
r

h ×= kvm
r

h
r
=and

solutions

Hall Effect

current 
density

Magnetic field
z

x

y

B FB

e-,vd

FB

e-,vd

-

+ + + + ++ + ++ ++ + +

- - - -- - - - - - - -
E

FE

y

x

BvqEqF
rrrr

×+=

The electric force and Lorentz force on an electron

xnevxjJ

zBB

d ˆˆ

ˆ

−==

=
r

r

0ˆ =yF

BeveEF dyy +−=

ne
BjE x

y −=

In general
neBj

E
R

x

y
H

1
−=≡ Hall coefficient

Hall effect reveals density and sign of charge carriers.

Hall resistivity
H

x

y
H BR

j
E

==ρ
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Classical Hall resistance

Quantum Hall resistance (von Klitzing, 1980)

Fractional quantum Hall effect

(Stormer, Tsui, Gossard, 1982)

Thermal conductivity

The flux of the 
thermal energy

the energy transmitted across 
unit area per unit timedx

dTjU κ−=
r

κ: thermal conductivity coefficient

Electric current density

Heat current density

EJ
rr

σ= ( )TLT ∇−+
r

( )TJU ∇−=
rr

κ ETLT

r
+

LT: thermal electric coefficient

Heat current from phonon –previous chapter

τκ 2

3
1

3
1

gg CvlCv ==

Apply to free electrons

2

2

2
1
2
1

FF

F

B
Be

mv

TknkC

=

=

ε

ε
π τπκ T

m
nkB

e

2
2

3
1

=

In pure metal, the electronic contribution is dominant at all Ts.
In impure metals or disordered materials,τis reduced by collisions 

with impurities, and the phonon contribution may be comparable with 
the electronic contribution.

The electron or phonon Carry the greater 
heat current in the metal?

Ratio of Thermal to Electrical Conductivity

LTT
e
k

mne
mTnk BBe ≡⎟

⎠
⎞

⎜
⎝
⎛==

22

2

22

3/
3/ π

τ
τπ

σ
κ

Lorenz number 22

3
⎟
⎠
⎞

⎜
⎝
⎛=

e
kL Bπ

Wiedemann-Franz law Lth= 2.45 ×10-8Watt-Ω/K2



1

1. Discussing the relation between thermal 
conductivity and temperature in the insulator crystal.

2. 1D chain of two unlike atoms (M and m). According 
the phonon dispersion relation, calculating the heat 
capacity in the case of M>>m. 

Quizzes
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1

Review
•Free electron model

treat conduction electrons as free particles

•The heat capacity of the electron
C = γT + AT3 

EJ
rr

σ≡
•Electric conductivity 

•Hall Effect in magnetic field

neBj
E

R
x

y
H

1
−=≡ Hall coefficient

H
x

y
H BR

j
E

==ρ Hall resistively

2

Thermal conductivity

The flux of the 
thermal energy

the energy transmitted across 
unit area per unit timedx

dTjU κ−=
r

κ: thermal conductivity coefficient

Electric current density

Heat current density

EJ
rr

σ= ( )TLT ∇−+
r

( )TJU ∇−=
rr

κ ETLT

r
+

LT: thermal electric coefficient

3

Heat current from phonon –previous chapter

21 1
3 3g gCv l Cvκ τ= =

Apply to free electrons

2

2

2
1
2
1

FF

F

B
Be

mv

TknkC

=

=

ε

ε
π τπκ T

m
nkB

e

2
2

3
1

=

In pure metal, the electronic contribution is dominant at all Ts.
In impure metals or disordered materials,τis reduced by 

collisions with impurities, and the phonon contribution may be 
comparable with the electronic contribution.

The electron or phonon carry the 
greater heat current in the metal?

gl v τ=

4

Ratio of Thermal to Electrical Conductivity

LTT
e
k

mne
mTnk BBe ≡⎟

⎠
⎞

⎜
⎝
⎛==

22

2

22

3/
3/ π

τ
τπ

σ
κ

Lorenz number:
22

3
⎟
⎠
⎞

⎜
⎝
⎛=

e
kL Bπ

Wiedemann-Franz law

Lth= 2.45 ×10-8WattΩ/K2

τπκ T
m

nkB
e

2
2

3
1

=
m

ne τσ
2

=

5

Note
Your homeworks should be submitted 
by 5:30 pm on next Friday! 

Otherwise…

Homework: 1,2,3,5,6

6
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7

Free electron model 
--- neglect the interactions of electrons with ions and 
other electrons.

Success:

treat conduction electrons 
as free particles

• The heat capacity in 
metal. (quantum 
effect)

• Electron 
conductivity, Ohm’s 
low.

• Ratio of thermal to 
electrical 
conductivity.

electrons are completely 
“free of the nuclei”

8

Failings :
• The distinction between metals, semiconductors, 

and insulator. 
• The positive value of Hall coefficient. 
• The relation of conductivity electron and free 

value electron.

Real crystal–potential variation 
with the periodicity of the crystal

Attractive potential around each 
nucleus.

9

1. What determines if the crystal will be a metal, an 
insulator, or a semiconductor? 

Band structures of solids 

Eg Eg

Conduction band 
partially filled 

Valence band filled /Conduction band empty
Eg<kBT Eg>>kBT

Metal semiconductor Insulator 
2. What form the energy band of solid? 

10

Chapter Seven
Energy Bands

• Nearly free electron model
• Bloch functions
• Kronig-Penney model
• Wave equation of electron in a 

periodic potential
• Number of orbitals in a band

11

Nearly free electron model
--add the periodic potential of the ion cores to free electrons 

Energy Band Theory

Supposing: The 
variation of the 
periodic 
potential is 
small. 

12

Idea of the energy band theory 

Ideal crystal

Electrons in crystal

Periodic crystal structure, the potential  of ion cores is 
also periodic.

The electron move in this periodic potential.

The motion equation The Schrodinger equation 
of single electron

( )
2

2

2
V r E

m
ψ ψ

⎡ ⎤
− ∇ + =⎢ ⎥
⎣ ⎦

h r ( ) ( )V r V r R= +
rr r

where
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13

When I started to think about it, I felt that the 
main problem was to explain how the electrons 
could sneak by all the ions in a metal….By 
straight Fourier analysis I found to my delight 
that the wave differed from the plane wave of 
free electrons only by a periodic modulation.

F. Bloch
Felix Bloch
The Nobel Prize in Physics 1952

1. the quantum mechanics of electrons in crystals and 
developing the theory of metallic conduction. 

3. Present new method of nuclear induction, a purely 
electromagnetic procedure for the study of nuclear moments in 
solids, liquids, or gases. 

2. the production and observation of polarized neutron beams. 

http://nobelprize.org/nobel_prizes/physics/laureates/1952/bloch-bio.html 14

Bloch’s theorem 
--- solution to Schrödinger equation is of the form

( ) ( ) exp( )u iΨ = •k kr r k r

plane wave function

periodic function due to periodic potential

1 1 2 2 3 3( ) ( ) ( )k k ku r u R nu r n a nr a a= ++ = + +
r r rr r r r

Lattice vector in real space

Mixing free and bound characters

Free : extend through the whole crystal

Bound : modulated by ion core interaction 

15

The electron wave  function in the crystal

Potential energy

Bloch function

Periodic function

Plane wave

Plane wave factor:  free electron motion in the crystal.
Periodic function: electron motion in the primitive cell

16

The expresses of Bloch theorem

The eigen functions of the wave equation for a 
periodic potential are the product of a plane wave 
exp(ik•r) time a function uk(r) with the periodicity of the 
crystal lattice.

The alternative form of Bloch theorem

( ) ( )exp( )u iΨ = •k kr r k r ( ) ( )k ku r u r R= +
r rr

( ) exp( ) ( )iΨ + = • Ψk r R k R r

The function waves are the product of the 
Bloch function time the phase factor exp(ik•R)

17

The strict proof of Bloch theorem

(1) The first step:equivalence

Bloch function:

( ) ( ) i iu e e• •Ψ + = + k R k r
k kr R r R

Under a crystal lattice translation r —> r+R

( ) ( ) exp( )u iΨ = •k kr r k r

( ) ( ) i iu e e• •Ψ + = k R k r
k kr R r

( ) ( ) ie •Ψ + = Ψ k R
k kr R r

18

(2) The second step

For each lattice vector R we define a translation operator TR

( ) ( )RT f f= +r r R

2
2ˆ ( ) [ ( )] ( )

2R rT H r V r r
m

ψ ψ= − ∇ + +Rhv v v

( ) ( )H r HT rψ ψ= + = RRv v

The Hamitonian is periodic T H HT=R R

TR is commuting operator 'T T T T T′ ′+= =R R R R R R

( ) ( ) ( )T T T T′ ′ ′Ψ = Ψ = Ψ + +R R R Rr r r R R
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19

The eigenstate of H can therefore be chosen to be 
simultaneous eigenstates of all the TR

( )aT c aΨ = Ψ
One dimension

( )
H
T c
Ψ = Ψ
Ψ = ΨR R

ε

( )n
naT c aΨ = Ψ

Periodic boundary condition  
( ) ( )

( ) ( ) ( ) ( )N
Na

x Na x
T x x Na c a x
Ψ + = Ψ

Ψ = Ψ + = Ψ

( ) 1Nc a =

( ) ikac a e= where
2k l
Na
π

=

20

Three dimension

1 1 2 2 3 3n n n= + +R a a a

31 2
1 2 3( ) ( ) ( )nn nT c a c a c aΨ = ΨR

3 3 31 1 1 2 2 2( ) ik n aik n a ik n ac e e e=R

( ) ic e •= k RR

1 1 2 2 3 3k k k= + +k b b b bi are reciprocal lattice vectors

Summarizing

( ) ( )iT e •Ψ = Ψ + = Ψk R
R r R r

The Bloch theorem
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Review
•Nearly free electron model

add the periodic potential of the ion cores to free electrons

•Bloch’s theorem

( ) ( ) exp( )u iΨ = •k kr r k r ( ) ( )k ku r u r R= +
r rr

( ) exp( ) ( )iΨ + = • Ψk r R k R r

2

Origin of the energy band and gap

Magnitude of the energy gap

Kronig-Penny Model

3

Origin of the energy band and gap

A free electron
kF<< kBZ and λ>> a

Electron wave function samples 
many atoms
U=constant
“Free Electrons”

Note :
1/32

1/33 3F
Nk n

V
π⎛ ⎞

= ≈⎜ ⎟
⎝ ⎠

BZk
a
π

≥

1/33 v
a valence electron #

Typical metals v>1and hence,kF~ kBZ.

4

kF<~ kBZand λ> ~ a

kF> kBZand λ~ a

Diffraction of Bloch waves
--Bragg scatterings

“Energy gaps”

k = ±π/a (BZ) Bragg reflection

2 sina nθ λ=
nk
a
π

=2a
n

λ =

5

1D electron wave function    

electron in a linear chain of lattice constant a

k small (λ>>a) 

Free electron eik r
k

•Ψ ∝
r r

Plane wave

k = ±π/a (BZ) 
ik r ik r

k e e• − •Ψ ∝ ±
r rr r

standing wavesBragg reflection
6

ik r ik r
k e e• − •Ψ ∝ ±

r rr r
( )

( )

2cos 2cos

2sin 2sin

xk r
a
xi k r i

a

π ψ

π ψ

+

−

⎧ ⎛ ⎞• = ≈⎜ ⎟⎪⎪ ⎝ ⎠∝ ⎨
⎛ ⎞⎪ • = ≈⎜ ⎟⎪ ⎝ ⎠⎩

r r

r r

Electron probability density
*ρ ψ ψ=

For a pure traveling wave exp(ikx)

exp( ) exp( ) 1ikx ikxρ = − =
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k = ±π/a (BZ) 

2

2

2 cos

2 sin

x for
L a

x for
L a

π

ρ
π

+

±

−

⎧ ⎛ ⎞ Ψ⎜ ⎟⎪⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪ Ψ⎜ ⎟⎪ ⎝ ⎠⎩

High density at atoms 

Low density at atoms 
atomx na=

Traveling wave

The potential energy of an electron in the field of a positive ion is negative

totalE T V= − ||
2

22

V
m
kh

−=

8

Energies due to potential energy U(x)

2 2

0 0

2( ) ( ) cos
L L xU dxU x dxU x

L a
π

+ +
⎛ ⎞= Ψ = ⎜ ⎟
⎝ ⎠∫ ∫

2 2

0 0

2( ) ( )sin
L L xU dxU x dxU x

L a
π

− −
⎛ ⎞= Ψ = ⎜ ⎟
⎝ ⎠∫ ∫

Energy difference

2 2

0

2 ( ) cos sin
L

g
x xE U U dxU x

L a a
π π

+ −

⎡ ⎤⎛ ⎞ ⎛ ⎞≡ − = −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫

0

2 2( )cos
L xdxU x

L a
π⎛ ⎞= ⎜ ⎟

⎝ ⎠∫

9

• Standing wave at the zone boundary.
• Energy gap–energies at which no wave can travel 

through crystal

Result :

energy band: due to the periodicity of lattice
energy gap:due to Bragg reflection of Bloch waves

10

Magnitude of the energy gap
expanding potential U(x) in Fourier series : U(x)=U(x+a)

( )
0

( ) iGx iGx iGx
G G

G G
U x U e U e e−

>

= = +∑ ∑

0

2 cos( )
G

GU Gx
>

= ∑
G : reciprocal lattice vector 2G n

a
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
Inverse

0

1 ( ) cos( )
a

GU dxU x Gx
a

= ∫

0

2 2( ) cos
L

g
xE dxU x

L a
π⎛ ⎞= ⎜ ⎟

⎝ ⎠∫Using

Eg= 2U2π/a= 2UG1

Energy gap is equal to the 
Fourier component of crystal 
potential.

11

For instance, 

0
2( ) cos xU x U

a
π⎛ ⎞= − ⎜ ⎟

⎝ ⎠

0
0

2 2 2( )cos cos
2 2

L

g
x xdx u

L
E π π⎛ ⎞ ⎛ ⎞− ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= ∫

0 0
2 1

2
U L U

L
⎛ ⎞ =⎜ ⎟
⎝ ⎠

=

The average of total energy

*

0

L

E dx Hψ ψ= ∫
*

0

L

E dx Hψ ψ+ + += ∫

*

0

L

E dx Hψ ψ− − −= ∫
12

Hence
2 2

*
02

00

cos2 2cos cos
2

L L x d x xdx U
L a m dx a

E
a

dx H π π πψ ψ++ +

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟= = ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

−
⎣ ⎦

∫∫
h

2
0

0 0

2 2
2( cos2 / ) 2cos cos

2

L La x x xdx U
L m a a a

dxπ π π π⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞−⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

= ∫∫
h

2 2

0
2 / )

2
(
2 4

a L LU
L m

π⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣

=
⎦

h

2 2
0/ )(

2 2
Ua

m
π

−=
h

The first-order energy
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2 2
*

02
00

2 2( )si cosn sin
2

L L x d x xdx i U i
L a m dx a a

E dx H π π πψ ψ− −−

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝

= = −
⎠ ⎝ ⎠⎣ ⎦

∫∫
h

2 2
0/ )(

2 2
Ua

m
π

+=
h

14

Kronig-Penny Model
--Square well periodic potential by Kronigand Penney

( ) :
0 0
0 0

U x
where x a
where b x

< <
− < <

2 2

2

( ) ( ) ( ) ( )
2

d x U x x x
m dx

ψ ψ εψ− + =
h

square well U(x)

2 2

0

2 2

0, ( ) /

0 , ( )

.

2

2

/ .

qx

i x i x

qx qb x x Ce

x a x Ae Be w
m

De w U
m

ε

ε

ψ

ψ

−

−

− < < = + =

< = + =

−

< K K K

h

h

U0

15

Boundary conditions :

(1) x=0 A+B = C+D
iK(A-B) = q(C-D)

How about other boundaries ?

x = a? What is ψ( a<x<a+b) ?

x = -b? What is ψ( -a-b<x<-b) ?

By Bloch theorem

( )

( )

( ) ( 0)
( ) (

e
e0 )

ik a b

ik a b

a x a b b x
a b x b x a

ψ ψ

ψ ψ

+

+

< < + = − < <

− − < < − = − < <

continuous

( ) exp( ) ( )iΨ + = • Ψk r R k R r

16

(2) x=a ( )
( ) ( ) (

( )

)i x i x qb qb ik

i x i x qb qb b

a

ik

b

aA

i Ae Be q Ce De e

e Be Ce De e
− −

− − +

+−

+ = +

= −

K

K

k

KK

Solving (1) and (2)

The determinant of the coefficients of A,B, C,D vanishes

2 2

)sinh( )s cosh( ) cos( ) cin(
2

os( )a qb a ka kbq qb
q

+
⎛ ⎞−
⎜ ⎟
⎝

= +
⎠

K K K
K

17

The result can be simplified by a periodic delta potential

b →0 and Uo→∞

Hence, bUo is finite and 
2 2 2 2

0 2 2
q bqbU b
m m

ε
⎛ ⎞

= + →⎜ ⎟
⎝ ⎠

h h

remain finite !2 2 2

2 2 2
q q q

q q
−

→ =
K
K K K

sinh(qb) →qbDue to and  cosh(qb) →1

2

sin( ) cos( ) cos( )
2
q ba a a ka

a
⎛ ⎞

+ =⎜ ⎟
⎝ ⎠

K K
K

18

P : a measure of strength of the barrier

0

0

2
0

02 2

( ) lim
2 b

U

U mabq ab maP bUε
→
→∞

− ⎛ ⎞= = ≈ ⎜ ⎟
⎝ ⎠h h

sin( ) cos( ) cos( )aP a ka
a

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

K K
K

(1) P→0 implying that K→k free electron

(2) P→∞
sin( )a

a
K

K
a nπ=K

2 2 2

22
nE

ma
π

=
h



4

19 20

2 2

2m
ε = Kh

21

Discontinuity occurs at Ka=nπ(corresponding to ka=nπ) where n∈Z

sin( ) cos( ) cos( )aP a ka
a

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

K K
K

22

Conclusion

• This model can be solved in terms of elemental 
functions. 

• The results have shown that the energy form the 
energy band in periodic field.

• The model can be develop to discuss the surface 
state and the multiple layer film.
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Review
1. Nearly free electron model

--add the periodic potential of the ion cores to free electrons 

Energy Band Theory

2. Bloch’s theorem

( ) ( ) exp( )u iΨ = •k kr r k r ( ) ( )k ku r u r R= +
r rr

( ) exp( ) ( )iΨ + = • Ψk r R k R r

3. Origin of the energy band and gap

energy band: due to the periodicity of lattice
energy gap:due to Bragg reflection of Bloch waves

ik r ik r
k e e• − •Ψ ±

r rr r

�

2 sina nθ λ=
2a
n

λ = nk
a
π

=

k = ±π/a (BZ) 

( )

( )

2cos 2cos

2sin 2sin

xk r
a
xi k r i

a

π ψ

π ψ

+

−

⎧ ⎛ ⎞• = ≈⎜ ⎟⎪⎪ ⎝ ⎠
⎨

⎛ ⎞⎪ • = ≈⎜ ⎟⎪ ⎝ ⎠⎩

r r

�
r r

Traveling wave

4. Kronig-Penny Model

( ) :
0 0
0 0

U x
where x a
where b x

< <
− < <

b →0 and Uo→∞

sin( ) cos( ) cos( )aP a ka
a

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

K K
K
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2 2

2m
ε = Khsin( ) cos( ) cos( )aP a ka

a
⎛ ⎞+ =⎜ ⎟
⎝ ⎠

K K
K Quiz

1. The wave functions of the electron will satisfy the 
Bloch theorem. Supposing a represent the lattice 
constant. The wave functions of electron are listed 
below. Calculate the wave vector in these states.     
( ) ( )

3( ) ( ) cos

k

k

xi x sin
a

xii x i
a

ψ π

ψ π

=

=

2.    Kronig-Penny Model. Considering the limit 
b=∞,U0= ∞ derive the expression about the energy, 
then analyses this  result. 
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Review
1. Nearly free electron model

--add the periodic potential of the ion cores to free electrons 

Energy Band Theory

2. Bloch’s theorem

( ) ( ) exp( )u iΨ = •k kr r k r ( ) ( )k ku r u r R= +
r rr

( ) exp( ) ( )iΨ + = • Ψk r R k R r

3. Origin of the energy band and gap

energy band: due to the periodicity of lattice
energy gap:due to Bragg reflection of Bloch waves

ik r ik r
k e e• − •Ψ ±

r rr r

�

2 sina nθ λ=
2a
n

λ = nk
a
π

=

k = ±π/a (BZ) 

( )

( )

2cos 2cos

2sin 2sin

xk r
a
xi k r i

a

π ψ

π ψ

+

−

⎧ ⎛ ⎞• = ≈⎜ ⎟⎪⎪ ⎝ ⎠
⎨

⎛ ⎞⎪ • = ≈⎜ ⎟⎪ ⎝ ⎠⎩

r r

�
r r

Traveling wave
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4. Kronig-Penny Model

( ) :
0 0
0 0

U x
where x a
where b x

< <
− < <

b →0 and Uo→∞

sin( ) cos( ) cos( )aP a ka
a

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

K K
K

2 2

2m
ε = Khsin( ) cos( ) cos( )aP a ka

a
⎛ ⎞+ =⎜ ⎟
⎝ ⎠

K K
K

Electrons in a weak periodic potential

General approach to the Schrodinger equation when 
the potential is weak.

1. The electron-ion interaction is strongest at small  separations, 
but the conduction electrons are forbidden from entering the 
immediate neighborhood of the ions because this region is 
already occupied by the core electrons.

2. In the region in which the conduction electrons are allowed, 
their mobility further diminishes the net potential any single 
electron experiences, for they can screen the fields of 
positively charged, diminishing the total effective potential.

Wave equation of electron in periodic potential

2 2

2

( ) ( ) ( ) ( )
2

d x U x x x
m dx

ψ ψ εψ− + =
h

Equation of motion 

( )xψ
The motion of one electron in potential of the ion 
cores and in the average potential of the other 
conduction electrons. 

Bloch theorem ( ) ( )ik rr e u rψ •=
r rr

Born-von Karman boundary condition
( ) ( )i ir N a rψ ψ+ =
r r

For a general potential, U(r ) is periodic in the lattice

( ) iGx
G

G
U x U e=∑ Fourier series

The Fourier coefficients UG

1 ( )iG r
G

cell

U dre U r
v

− •= ∫
r

*
G G GU U U−= =U( r) is real

( ) ( )i ir N a rψ ψ+ =
r r

Wave function obeying the Born-von Karman boundary condition

2k n
L
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
( ) ik r

k
k

r C eψ •=∑
r r

r
r

r

( ) ikx
k

k

x C eψ =∑

( ) iGx
G

G
U x U e=∑

2 2

2

( ) ( ) ( ) ( )
2

d x U x x x
m dx

ψ ψ εψ− + =
h

Wave equation

One dimension
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2 2 2
2

2

( )
2 2

ikx
k

k

d x k C e
m dx m

ψ
− = ∑h h

( )iGx iGx ikx
G G k

G G k
U e x U e C eψ⎛ ⎞

=⎜ ⎟
⎝ ⎠
∑ ∑∑

2
2

2
ikx iGx ikx ikx

k G k k
k G k k

k C e U e C e C e
m

ε+ =∑ ∑∑ ∑h

The kinetic energy term

The potential energy term

2
2 ( ) '

'
'2

ikx i k G x ik x
k G k G k G

k k G k G
k C e U C e U C e

m
ε +

−

⎛ ⎞⎛ ⎞ ⎛ ⎞− = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑∑ ∑ ∑h

' '
'

ikx
G k G

k G

U C e−
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

∑ ∑

2
2

' '
'

0
2 q G q G

G

q C U C
m

ε −

⎛ ⎞
− + =⎜ ⎟

⎝ ⎠
∑h

k         q

2
2

' '
'

0
2 q G q G

G

q C U C
m

ε −

⎛ ⎞
− + =⎜ ⎟

⎝ ⎠
∑h

For convenient to write q in the form q=k-G

2
2

' '
'

( ) 0
2 k G G G k G

G

k G C U C
m

ε − − −

⎛ ⎞
− − + =⎜ ⎟

⎝ ⎠
∑h

o G is a reciprocal lattice vector 
o k  lies in the fist Brillouin zone

the central eq.

The original problem has separated into N independent problem

( )( ) i k G x
k k G

G
x C eψ −

−=∑
For fixed k

( ) ik r
k

k

r C eψ •=∑
r r

r
r

r

( ) ( )iGx ikx ikx
k k G k

G
x C e e u x eψ −

−
⎛ ⎞= =⎜ ⎟
⎝ ⎠
∑

( ) iGx
k k G

G
u x C e−

−= ∑

( ) ( )k ku x u x R= +
( )( ) ( ) ( )iG x R iGR

k k G k k
G

u x R C e e u x u x− + −
−+ = = =∑

0

Proof of Bloch theorem

Case 1 The Kronig-Penney model
---- A periodic delta-function potential

( ) iGx
G

G
U x U e=∑

0 0
( ) 2 cosiGx iGx

G G
G G

U e e U Gx−

> >

= + =∑ ∑
Real function

( ) ( )
s

U x Aa x saδ= −∑

1 1

0 0
( ) cos ( ) cosG

s

U dxU x Gx Aa dx x sa Gxδ= = −∑∫ ∫
cos

s
Aa Gsa A= =∑

According to the central eq.

( ) 0k k G k G
G

C U Cλ ε −− + =∑ 2 2 / 2k k mλ = h

( ) ( ) ( 2 / ) 0k
n

C k A C k n aλ ε π− + − =∑

( ) ( 2 / )
n

f k C k n aπ= −∑
2

2 2

(2 / ) ( )( )
(2 / )

mA f kC k
k mε

= −
−

h

h

( ) ( 2 / )f k f k n aπ= −
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)/2()/2(
)()/2()/2( 22

2

h

h

επ
π

mank
kfmAankC

−−
−=−

=− )/2( ankC π
)/2()/2(

)()/2(
22

2

h

h

επ mank
kfmA

−−
−∑

n
∑

n

( ) ( 2 / )
n

f k C k n aπ= −∑

)/2()/2(
1)2/( 22

2

h
h

επ mank
mA

n −−
−= ∑

)/2()/2(
1)2/( 22

2

h
h

επ mank
mA

n −−
−= ∑

∑ −
=

n xn
x

π
1)ctg(

)cos(cos4
sin2

KakaKa
Kaa
−

22 /2 hεmK =

kaKaKaKamAa coscossin))(2/( 122 =+−h

Kronig-Pennney model

Case 2

U(x) = 2U cos2πx/a = U exp(2πix/a)+U exp(-2πix/a)

,

iGx
G

G g g
U e

= −

= ∑

There are only 2 components Ug=U-g=U (g=2π/a)

2
2

' '
'

( ) 0
2 k G G G q G

G

k G C U C
m

ε − − −

⎛ ⎞
− − + =⎜ ⎟

⎝ ⎠
∑h

Matrix form of the central eq.

2

2

0 0 0 ( 2 )
0 0 ( )

00 0 ( )
0 0 ( )
0 0 0 ( 2 )

k g

k g

k

k g

k g

U C k g
U U C k g

U U C k
U U C k g

U C k g

λ ε
λ ε

λ ε
λ ε

λ ε

−

−

+

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −
⎜ ⎟⎜ ⎟

=−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− +
⎜ ⎟⎜ ⎟

− +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

O M

O

Approximate solution near a zone boundary

1. Considering a wavevector exactly at zone boundary 
at first Brillouin zone boundary ½ g

k=0.5 g= π/a 

C( ½ g) and C( k- ½ g) is important coefficients.

2

2

0 0 0 ( 2 )
0 0 ( )

00 0 ( )
0 0 ( )
0 0 0 ( 2 )

k g

k g

k

k g

k g

U C k g
U U C k g

U U C k
U U C k g

U C k g

λ ε
λ ε

λ ε
λ ε

λ ε

−

−

+

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −
⎜ ⎟⎜ ⎟

=−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− +
⎜ ⎟⎜ ⎟

− +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

O M

O

ħ2(k-g)2/2m= ħ2(g/2)2/2m k=0.5 g

gkg −= λλ
Central equation :

1 1
2 2

( ) 0G GC UCλ ε
−

− + =

( )
1 1

2 2

0G GC UCλ ε
−

− + =
0

U
U
λ ε

λ ε
−

=
−

22

2 2
gU U

m
ε λ ⎛ ⎞= ± = ±⎜ ⎟

⎝ ⎠
h
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1 1
2 2

( ) 0G GC UCλ ε
−

− + =

( )
1 1

2 2

0G GC UCλ ε
−

− + =
1

)2/1(
)2/1(

±=
−

=
−

UgC
gC λε

Wave function at first Brillouin zone boundary

)2/exp()2/exp()( igxigxx −±=ψ

Standing waves, 

identical to previous discussion

Empty lattice approximation

Empty simple cubic lattice, ε(k) in the reduced zone 

free electron 
2

2 2 2( , , ) ( )
2x y z x y zk k k k k k
m

ε = + +
h

2 2
2 2 2 2( , , ) ( ) (( ) ( ) ( ) )

2 2x y z x x y y z zk k k k G k G k G k G
m m

ε = + = + + + + +
h h

Look for a G k G k′ + =
r rr

k : unstricted and is true free electron wave vector in empty 
lattice

free electron energy In the 1st BZ

Along [100] direction,
2

2 2 2( , , ) (( ) ( ) ( ) )
2x y z x x y zk k k k G G G
m

ε = + + +
h For other directions, change kx, ky, kz

For other lattices, must use proper Gs

To get band structure of real crystals, turn on weak 
periodic potential 

Band gap opens up at the BZ boundary 
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1

( ) ikx
k

k
x C eψ =∑

( ) iGx
G

G
U x U e=∑

2 2

2

( ) ( ) ( ) ( )
2

d x U x x x
m dx

ψ ψ εψ− + =
h

Wave equation

Review

2
2

' '
'

( ) 0
2 k G G G k G

G
k G C U C

m
ε − − −

⎛ ⎞
− − + =⎜ ⎟

⎝ ⎠
∑h

2

U(x) = 2U cos2πx/a = U exp(2πix/a)+U exp(-2πix/a)

,

iGx
G

G g g
U e

= −

= ∑

There are only 2 components Ug=U-g=U (g=2π/a)

2
2

' '
'

( ) 0
2 k G G G k G

G

k G C U C
m

ε − − −

⎛ ⎞
− − + =⎜ ⎟

⎝ ⎠
∑h

3

Matrix form of the central eq.

2

2

0 0 0 ( 2 )
0 0 ( )

00 0 ( )
0 0 ( )
0 0 0 ( 2 )

k g

k g

k

k g

k g

U C k g
U U C k g

U U C k
U U C k g

U C k g

λ ε
λ ε

λ ε
λ ε

λ ε

−

−

+

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −
⎜ ⎟⎜ ⎟

=−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− +
⎜ ⎟⎜ ⎟

− +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

O M

O

4

Approximate solution near a zone boundary

1. Considering a wavevector exactly at zone boundary 
at first Brillouin zone boundary ½ g

k=0.5 g= π/a 

C( ½ g) and C(- ½ g) is important coefficients.

ħ2(k-g)2/2m= ħ2(g/2)2/2m k=0.5 g

gkg −= λλ

5

Central equation :

1 1
2 2

( ) 0G GC UCλ ε
−

− + =

( )
1 1

2 2

0G GC UCλ ε
−

− + =
0

U
U
λ ε

λ ε
−

=
−

22

2 2
gU U

m
ε λ ⎛ ⎞= ± = ±⎜ ⎟

⎝ ⎠
h

2

2

0 0 0 ( 2 )
0 0 ( )

00 0 ( )
0 0 ( )
0 0 0 ( 2 )

k g

k g

k

k g

k g

U C k g
U U C k g

U U C k
U U C k g

U C k g

λ ε
λ ε

λ ε
λ ε

λ ε

−

−

+

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −
⎜ ⎟⎜ ⎟=−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− +
⎜ ⎟⎜ ⎟

− +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

O M

O

6

1 1
2 2

( ) 0G GC UCλ ε
−

− + =

( )
1 1

2 2

0G GC UCλ ε
−

− + =
1

)2/1(
)2/1(

±=
−

=
−

UgC
gC λε

Wave function at first Brillouin zone boundary

)2/exp()2/exp()( igxigxx −±=ψ

Standing waves, 

identical to previous discussion

22

2 2
gU U

m
ε λ ⎛ ⎞= ± = ±⎜ ⎟

⎝ ⎠
h
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2. Near the zone boundary

( ) 0k k k GC UCλ ε −− + =

0k

k G

U
U

λ ε
λ ε−

−
=

−

whereλk≡ħ2k2/2m

2
2 2( )1 ( )

2 4
k k G

k k G Uλ λε λ λ −
−

−
= + ± +

Two solutions :

( ) 0k G k G kC UCλ ε− −− + =

2

2

0 0 0 ( 2 )
0 0 ( )

00 0 ( )
0 0 ( )
0 0 0 ( 2 )

k g

k g

k

k g

k g

U C k g
U U C k g

U U C k
U U C k g

U C k g

λ ε
λ ε

λ ε
λ ε

λ ε

−

−

+

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −
⎜ ⎟⎜ ⎟

=−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− +
⎜ ⎟⎜ ⎟

− +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

O M

O
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Introducing a new parameter 

2
Gk K≡ +%

difference bet. k and zone boundary

2
2( )1 ( )

2 4
k k G

k k k G Uλ λε λ λ −
−

−
= + ± +

2

2 2 2

2 2

1
2 4

G GK K

G GK K K
U

λ λ
ε λ λ

+ −

+ −

⎛ ⎞
−⎜ ⎟⎛ ⎞ ⎝ ⎠= + ± +⎜ ⎟

⎝ ⎠

% %

% % %

2
GK k≡ −%

9

2 22 2 2
2

2 2

1
2 4 2 2 2 4G GK K

G G GK K K
m m

λ λ
+ −

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ = + + − = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
% %

h h% % %

( )
22 2 24 4

2 2
2 2

2 2

1
2 16 2 2 4G GK K

G GK K K G
m m

λ λ
+ −

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = + − − =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
% %

h h% % %

22 2 2 2 2

4 4
2 2 2 2
K G K
m m m

λ
⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

% %h h h

First term

second term

10

2 2 2 2
2 24

2 4 2K

G KK U
m m

ε λ
⎛ ⎞

= + ± +⎜ ⎟
⎝ ⎠

%

%h h%
2 2 2 2

21 4
2 2
K KU
m m U

λλ
⎛ ⎞

= + ± +⎜ ⎟
⎝ ⎠

% %h h

2 2 2 2

2

11 4
2 2 2K

K KU
m m U

λε λ
⎛ ⎞ ⎛ ⎞

≈ + ± +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

%

% %h h

2 2 2( ) 1
2K

KU
m U

λε λ ⎛ ⎞= ± + ±⎜ ⎟
⎝ ⎠

%

%h

11

( ) exp( ) exp( ( ) )k k Gx C ikx C i k G xψ −= + −

k G k

k

C
C U

λ ε− −
= −

One component dominates 
as we move away from the 
boundary.

( ) 0k k k GC UCλ ε −− + =

12

Energy bands of nearly free electron calculation 

k is unrestricted 
and is true free 
electron 
wavevector. 
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13

Bloch Theorem

( )( ) i k G x
k k G

G
x C eψ −

−=∑ ( ) ( ) ikx
k kx u x eψ =

( ) ( )k G k

k G k

x xψ ψ
ε ε

+

+

=
=

Check !

The eigenstates and eignvalues are periodic functions 
of k in the reciprocal lattice.

14

Look for 'k G k+ =

k’ in the first zone Reduced wavevetor

Reduced zone

15

Extended, reduced, and periodic Brillouinzone schemes 

Periodic zone Reduced zone Extended zone

All allowed states correspond to k-vectors in the first Brillouin Zone.

Can draw ε(k) in 3 different ways

16

17 18

•Each segment of ε versus k is an 
energy band

•Energy bands are separated by 
an energy gaps: 2UG

Separate
Or

Continue

?
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19

Number of orbitals in a band

Linear crystal constructed of an even number 
N of primitive cell of lattice constant a. 

k = 0, ±2π/L , ±4π/L , ±6π/L…Nπ/L

Na=L

( ) ( )k kx x Naψ ψ= +

( )( ) i k G x
k k G

G
x C eψ −

−=∑

20

Density of state (DOS)

Number of states per band ?

D(k)= L/2π

Δk(BZ)=2π/a 

( ) 2( )
2band cell
L Lk BZ NN

a a
D k π

π
Δ = = ==

Each primitive cell contributes exactly one independent 
value of k to each energy band.

there are 2N independent orbitals in each energy band with 
account taken of the two independent orientations of the 
electron spin.

Single atom of valence one in each cell
Single atom of valence two in each cell
Two atoms of valence one in each cell

21

What determines if the crystal will be a metal, or an 
insulator?

In terms of band theory of solids, 

the absence of metallic conductivity implies that no 
partially filled bands.

In insulator, every band is either completely filled or 
completely empty.

22

Explain:

Energy of electron : ( ) ( )n nE k E k= −
v v

velocity of wave 
vector k electron  :

v

Ekv k∇=
h

vv 1)(

velocity of wave 
vector -k electron  :

1( ) kv k E−− = − ∇
vv

h

)()( kvkv
vvvv −−=

Case 1:  filled band insulator

23

i. no electric field

)()( kvkv
vvvv −−=

1 [ ( ) ( ) 0
2N

I N qv k qv k= + − =∑
rrr r

No net current

24

ii  with external electric field

There is no continuous 
way to change the total 
momentum of the 
electrons if every 
accessible state is filled.

An external electron field will not cause current flow for 
filled band case. 

Eq
dt
kd v

h

v
1

−=
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25

Case 1:  partly filled band

i. no electric field

1 [ ( ) ( ) 0
2N

I N qv k qv k= + − =∑
rrr r

No net current

26

ii  with external electric field

An external electric field 
will change distribution 
of electronic state.

net current=0

27

Monovalent Li(3)、Na(11)、K(19)、Cu(29)、Ag(47)

1/2 band filled 

Trivalent 3/2 band filled Al(13)

Crystal with an odd number of electrons per cell must be metallic.

Divalent               1 band filled (insulator ?)

Crystal with an even number of electrons per cell must be insulator?

Alkaline earth metal Be(4)、Mg(12)、Zn(30) Divalent

metalBands overlap

28

Occupied states and band structures giving (a) an insulator, (b) a 
metal or a senimetal because of band overlap, and (c)a metal 
because of electron concentration. If the overlap is small, with
relatively few states involved, we speak of a semimetal.

29

Crystal with an even number of electrons per cell may be 
either metallic or insulating.

Metals

Overlapping bands

Be,Mg,Ca,Sr,Ba…

Both 3S and 3P bands 
are partially filled.

Insulators

No overlap of bands

Si, Ge, …

Valence band filled 

Conduction band empty 30

Homework

P 195
7.1  7.2  7.3  7.4  7.6
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Chapter 8
Semiconductor Crystal

1) Band gap
2) Equations of motion 
3) Intrinsic carrier concentration
4) Impurity conductivity
5) Thermoelectric effects
6) Semimetals
7) Superlattices

1958年第一块集成电路：TI公司的Kilby，12个器件，Ge晶片

获得2000年Nobel物理奖

晶体管的三位发明人：巴丁、肖克莱、布拉顿

1947年12月23日
第一个晶体管
NPN Ge晶体管

W. Schokley
J. Bardeen
W. Brattain

获得1956年Nobel物理奖

Elements :Group IV

C(graphite) 1S22S22P2 

Si 1S22S22P63S23P2 

Ge

1S22S22P63S23P63d104S24P2 
Compounds :

IV-IV: SiC
III-V: GaAs, InSb, GaP, ..

Ga1S22S22P63S23P63d104S24P1 
As 1S22S22P63S23P63d104S24P3

II-VI : ZnS, CdSe, …

Useful nomenclature
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Vacant conduction band

Filled valence band

Eg

Energy Forbidden band

Band gap

valence band edge

Conduction band edge

zero temperature

finite temperature

zero Conductivity

finite conductivity

Band gap

determines intrinsic conductivity and intrinsic carrier concentration

g

B

E
k T

Eg can be obtained by optical absorption

Two types of semiconductors 

Band edges (extremes)
at same k

(most compounds)

Band edges of valence 
and conduction bans
at different ks

( Ge[111], Si[100], …)

Direct absorption process

gEω =h

' photonk k p− =
v v v

h h

kk
v

h
v

h ≈'
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Indirect absorption process

kk
vv

≠'

Ω±=Δ hhωkE

kE ωΔ ≈ hkE ωΔ = ± Ωh h

' photonk k p q− = ±
v v v v

h h h

qkk v
h

v
h

v
h ±=−'

Optical absorption of InSb

Eg=0.23eV

A sharp threshold

Why is your 
computer chip 
made of Si, but 
the laser in your 
CD player is 
made of 
GaAs(GaN in 
the future)?

Comparison of absorption 

Light emission is related 

–very high efficiency in GaAs for excited electron to emit light

–very low efficiency in Si

Why is GaN interesting?

After decades of efforts, finally it is possible to 
make blue light emitter and laser.

Shorter wavelength light focuses to smaller spot 
implies higher density of information on a CD.

In an external electric field E, 

The energy gained by the electron in a time interval Δt

1( ) ( ) ( ) ( )kF l eE v t eE k tε εΔ = •Δ = − • Δ = − • ∇ Δr

r rr r rr

h

( ) ( )k k kε= ∇ • Δr

r r

Equation of motion

EeF
rr

−= tvl Δ=Δ
rr

kkv d/dd/d 1 εω −== h
v
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In general, equation of motion for an Bloch electron under Lorentz forces 

1 ( )ext k

dk F q E k B
dt

ε⎛ ⎞⎛ ⎞= = + ∇ ×⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
r

r
rr r r

h
h

Weak external forces such that band structure still holds.

setting Δt→0 

eEdk dt−
=

r
r

h

dk eE F
dt

= − =
r

r r
h

eEdk dt−
=

r
r

h

eEk t−
Δ = Δ

r
r

h

Newton’s 2nd law

Real momentum 

ˆelP k p k=

2
k G

G
k G C += +∑
r r

h h

( )( ) i k G r
k k G

G

k r C eψ + •
+= =∑

2| 1k G
G

k k C += =∑

where

k k
i

= ∇
h 2( ) k G

G
i k G C

i += +∑h

Under a weak external force F,

Impulse = the change of momentum of the crystal

total eletron latticaJ Fdt P P P= = Δ = Δ + Δ∫
r r r r

( )2
( )electron electronk k k G

G
P P k k G C k

+
Δ = Δ •Δ = Δ + ∇ •Δ∑r r r r

r r rrr
h h

2
k G

G

k G C += +∑
r r

h h

k
r

h )( Gk
rr

h +
Momentum of electron

Momentum of lattice G
r

h−

>−=< kGkplat || h

( )2

lattice k k G
G

P G C k
+

Δ = − ∇ •Δ∑ r r r

rr
h

J k= Δ
rr

h
dk F
dt

=
r

r
h

same as for free electrons

Holes in semiconductors

• In a completely filled band (valence band), no 
current can flow since electrons are Fermions and 
obey the Pauli exclusion principle.

• The empty states in the valence band are called “holes”.

k

ε

• The electrons can “move”if there is an empty state 
(a hole) available.

• A hole acts under the external forces as if it has a 
positive charge +e.

Missing electron 
= producing hole
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In a full band : all pairs of states are filled and ( , )k k−
r r

0k =∑
r

If an electron of wave vector ke is missing, ek k= −∑
r r

Alternatively speaking, 

a hole of wave vector is produced and hk
r

h ek k= −
r r

• Setting the energy of the top of 
valence band is zero,

• the lower in the band the 
missing electron lies, the higher 
the energy of the system.

The band is symmetric :

( ) ( ) ( )e e e e h hk k kε ε ε= − = −
r r r

The group velocity of the hole is the same as that of the electron.

( )1 1 ( )
h eh h e ek kv vε ε= ∇ = −∇ − =r r

h h

k

ε

How does a hole move?

)()]()[()()( EevEveGvej =−−=−=

1( ) ( )
e

e
e ek

dk e E k B
dt

ε⎛ ⎞= − + ∇ ×⎜ ⎟
⎝ ⎠

r

r
rr r

h
h

the equation of a motion for an electron

Applying to a missing electron: creation of a hole

( ) 1( ) ( )
h

h
h hk

d k e E k B
dt

ε− ⎛ ⎞= − + ∇ ×⎜ ⎟
⎝ ⎠

r

r
rr r

h
h

1( ) ( )
h

h
h hk

dk e E k B
dt

ε⎛ ⎞= + + ∇ ×⎜ ⎟
⎝ ⎠

r

r
rr r

h
h

the equation of a motion for a hole

exactly the equation of motion for a particle of positive charge
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Two types of semiconductors 

Band edges (extremes)
at same k

(most compounds)

Band edges of valence 
and conduction bans
at different ks

( Ge[111], Si[100], …)

Review Holes in semiconductors

• The empty states in the valence band are called “holes”.

• The electrons can “move”if there is an empty state 
(a hole) available.

• A hole acts under the external forces as if it has a 
positive charge +e.

Effective mass (band mass)

For a free electron ε(k) = ħ2k2/2m 

For electrons in a band, their masses depend on band curvature. 

2

2 2

1 1 ( )
*

d k
m dk

ε
=
h

2 2 2( ) 1
2K

KU
m U

λε λ ⎛ ⎞≈ ± + ±⎜ ⎟
⎝ ⎠

%

%h

2
GK k≡ −%

distance to the zone boundary

m*=m

2
2( )

2c
e

K K
m

ε ε= +
h% % where εc=λ+U

near the top edge of the 1st band 
2

2( )
2v

h

K K
m

ε ε= −
h% %

where εc=λ-U

near the lower edge of the 2nd band

2 2 2( ) 1
2K

KU
m U

λε λ ⎛ ⎞≈ ± + ±⎜ ⎟
⎝ ⎠

%

%h

2 2
2 2 21

2 2e

K K
m m U

λ⎛ ⎞= +⎜ ⎟
⎝ ⎠

h h% % 1
2 / 1

em
m Uλ

=
+

2 2
2 2 2 1

2 2h

K K
m m U

λ⎛ ⎞= −⎜ ⎟
⎝ ⎠

h h% % 1
2 / 1

hm
m Uλ

=
−

1( ) ( )kv k kε= ∇ r

r rr

h
2 2

2 2 2

( )( ) 1 1 ( ) 1 ( )kd kdv k d k dk d k dk
dt dt dk dt dk dt

ε ε ε∇ ⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

r rr
h

h h h

From Newton’s 2nd law 
2

2 2

1 1 ( )
*

d k
m dk

ε
=
h

Definition of the effective mass

F

Considering an anisotropic energy surface 

2

2

1 1 ( )
*

d k
m dk dkμν μ ν

ε⎛ ⎞ =⎜ ⎟
⎝ ⎠ h

where μand νare Cartesian coordinates.

reciprocal effective mass tensor (3x3)

In three (two) dimensions, constant energy surfaces 
(lines) are not necessarily spherical (circular), and the 

effective mass is a tensor:
2

2

1 1 ( )
*

d k
m dk dkμν μ ν

ε⎛ ⎞ =⎜ ⎟
⎝ ⎠ h
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In two dimensions, free electron

2
2 2( , ) ( )

2x y x y
e

k k k k
m

ε = +
h

0
*

0
e

e

m
m

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

2

2

1 1 ( ) 1
* e

d k
m dk dk m μν

μν μ ν

ε δ⎛ ⎞ = =⎜ ⎟
⎝ ⎠ h

m* <0

m* >0

m* can be determined by cyclotron resonance measurements.

2

2

2

*
( )

m
d k

dk
ε

=
h

The effective mass depends on the curvature of the bands

The flat bands have large effective masses
The curved bands have small effective masses

Near the bottom of a band, m* is positive
Near the top of a band, m* is negative

Effective mass in semiconductors

Cyclotron resonance energy surfaces of the 
conduction and valence 
bands near the band edge

*c
eB
m

ω = where m*is the cyclotron effective mass

0.58--0.99Cu2O

0.0250.390.026InAs

0.0820.50.066GaAs

Light hole 
(mlh/m)

Heavy hole 
(mhh/m)

Electron 
(me/m)

Crystal
2

2

2

* ( )dm k
dk
ε= h

Eg

ε

k

direct conduction band 

Heavy hole band 

Light hole band

2 2

2g
e

kE
m

ε = +
h

2 2

2 h

k
m

ε = h

Intrinsic carrier concentration

metallic conductivity

conductivity of 
semiconductor

temperaturedependent

“free”charges must be thermally excited and overcome Eg

temperature dR/dT>0

dR/dT<0
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charge carrier concentrations n & p have a strong dependence on T.

Semiconductor are called “intrinsic”

when “free”electrons and holes can be created only 
by electronic excitations from the valence band to 
the conduction band.

Intrinsic  ?
Electron concentration in the conduction band

Hole concentration in the valence band

( ) ( ),
c

c e
E

n D f T dε ε ε
∞

= ∫

( ) ( ),
vE

v hp D f T dε ε ε
−∞

= ∫

Fermi-Dirac distribution

( ) ( )
1

exp / 1
exp

B
e

Bk T T
f

k
ε μ

μ
ε

ε − +
= ≈

⎛
⎡ ⎤⎣ ⎦

⎞−
−⎜ ⎟
⎝ ⎠

( ) ( )
1 ( 1

1 exp
exp)

/ B B
h e k

f f
k TT

ε ε
ε μ

ε μ
= − = ≈

+ − −
⎛ ⎞−
⎜ ⎟
⎝⎡ ⎤⎦ ⎠⎣

TkB>>− με
Electrons

Holes

suppose

Bolzmann

TkB>>−εμsuppose

In the parabolic approximation (for simplicity),

The energy of an electron in the conduction band,

2 2

2k c
e

kE
m

ε = +
h

Density of states, ( ) c
e EmD −⎟
⎠
⎞

⎜
⎝
⎛= ε

π
ε

2/3

22

2
2
1

h

( ) ( ),
c

c e
E

n D f T dε ε ε
∞

= ∫
( )cD ε

( ),ef Tε

3/2

2 2

21 exp exp
2

c

e
c

B BE

m E d
k T k T
μ εε ε

π

∞⎛ ⎞ ⎛ ⎞−⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫h

2 2

21 exp
2

c

e
c

BE

m E d
k T
μ εε ε

π

∞ ⎛ ⎞−⎛ ⎞= − ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ h

( ) ( ),
c

c e
E

n D f T dε ε ε
∞

= ∫

0

exp exp c

B B

Ed
k T k T
εε ε

∞ ⎛ ⎞ ⎛ ⎞−−
×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫

3/2

22 exp
2

e B c

B

m k T En
k T
μ

π
⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠h

3/2

2 2

21 exp exp
2

c

e
c

B BE

m E d
k T k T
μ εε ε

π

∞⎛ ⎞ ⎛ ⎞−⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫h
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( ) ( ),
vE

v hp D f T dε ε ε
−∞

= ∫

3/2

2 2

21 exp exp
2

vE
h

v
B B

m E d
k T k T
μ εε ε

π −∞

⎛ ⎞ ⎛ ⎞−⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫h

3/2

2 2

21 exp
2

vE
h

v
B

m E d
k T
ε με ε

π−∞

⎛ ⎞−⎛ ⎞= − ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ h

( ) ε
π

ε −⎟
⎠
⎞

⎜
⎝
⎛= v

e EmD
2/3

22

2
2
1

h

*

0

exp exp v

B B

Ed
k T k T
εε ε

∞ ⎛ ⎞ ⎛ ⎞−
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫

3/2

22 exp
2

h B v

B

m k T Ep
k T

μ
π

⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠h

3/2

2 2

21 exp exp
2

vE
h

v
B B

m E d
k T k T
μ εε ε

π −∞

⎛ ⎞ ⎛ ⎞−⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫h

3/2

22 exp
2

e B c

B

m k T E
k T
μ

π
⎛ ⎞−⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠h

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟
⎠
⎞

⎜
⎝
⎛=

Tk
E

mmTk

B

g
he

B exp
2

4 2/3
3

2hπ

=constant depends on material and temperature

Eg=Ec-Ev

Independent of EF, (μ)

3/2

22 exp
2

h B v

B

m k T E
k T

μ
π

⎛ ⎞−⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠h
np =

For an intrinsic semiconductor n=p,

3/2

22 exp
2

e B c

B

m k T En
k T
μ

π
⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠h

( )
3/2

3/4
22 exp

2 2
gB

i i e h
B

Ek Tn p m m
k Tπ
−⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠h

Fermi level ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

e

h
Bg m

mTkE ln
4
3

2
1μ

3/2

22 exp
2

h B v

B

m k T Ep
k T

μ
π

⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠h

At T=0, μlies half-way between the conduction and valence bands.

As T increases,μmoves toward the band with smaller effective mass

μdoes not go far from mid-gap when mh≈me

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

e

h
Bg m

mTkE ln
4
3

2
1μ

Intrinsic mobility 

Electrical conductivity

he pene μμσ +=
∝ n & p

µ:

The magnitude of the velocity per unit electron field

E
vd=μmobility

∝ µ

μσ ne=

SI units Vsm /2
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dv
E

μ =

2 2
e h

e h

ne pe
m m
τ τσ = +

/v q E mτ=
Drift velocity of a charge q

he pene μμσ +=

The hole mobilities are typically smaller than the electron mobilities

600550PbS
18003600Ge
4801350Si

12001800Diamond
45030000InAs
3008000GaAs

μh(cm2/Vs)μe(cm2/Vs)crystal

T=300 k

because of the occurrence of band degeneracy 
at the valence band edge at the zone center, 

thereby making possible interband scattering 
processes that reduce the mobility.
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Intrinsic carrier concentration

“free”charges must be thermally excited and overcome Eg

3/2

22 exp
2

e B c

B

m k T En
k T
μ

π
⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠h

3/2

22 exp
2

h B v

B

m k T Ep
k T

μ
π

⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠h

( )
3

3/2
24 exp

2
gB

e h
B

Ek Tnp m m
k Tπ
−⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠h
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
⎟
⎠
⎞

⎜
⎝
⎛==

Tk
E

mmTkpn
B

g
he

B
ii 2

exp
2

2 4/3
2/3

2hπ

Review
Impurity conductivity

Doping : addition of impurities to the crystal

Increases the 
conductivity of pure 
silicon 

(1) Donors – Group of V such as N, P, As, Sb

Substitutional impurity for semiconductor 

each dopant atom contribute an electron

(2) Acceptors – Group of III such as B, Al, Ga, In 

attract electrons from valence band of semiconductor 

create a hole per atom

N-type

P-type

Donors Acceptors
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Boron atom Silicon atom

Where do electrons / holes of the dopants go?

free or bound

Low T : bound

High T : free kBT> Ed (electron), Ea (hole)

Donor 
Activated

energy

Acceptor
activated
energy

Activated energy –From Bohr model 

Hydrogen atom

r
mv

r
eF

2

2
0

2

4
==

πε
and hnmvrL ==

2
0

2
2

2
04 nan

me
rn ==

hπε

2222
0

2

4 6.131
32 n

eV
n

meEn −=−=
hεπ

Ionization energy 

13.6 eV

N-doped Silicon P-doped Silicon
The fifth valence electron of  P atom is not required 

for bounding and is thus, only weakly bound. The binding 
energy can be estimated by treating the system as a 
hydrogen atom embedded in a dielectric.

Donor 

r
vm

r
eF e

2

2

2

4
==

πε and λπ nr =2
0κεε =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

ee
d m

ma
em

a κπκε
02

2
04 h ao(10)(10)

⎟
⎠
⎞

⎜
⎝
⎛==

m
meVmeE ee

d 222
0

22

4 6.13
32 κεκπ h

13.6eV(10-2)(10-1)

Dielectric constant 
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The valence –three Boron (B) accepts an electron 
from the Si lattice. The hole that is thereby created in 
the valence band orbits around the negatively 
charged impurity.

The Bohr model applies qualitatively for holes 
just as for electrons, but the degeneracy at the top of 
the valence band complicates the effective mass 
problem.

In a doped semiconductor, 

Density of doped donor 

Density of doped acceptor 

an electron in the conduction band can originate either from

the valence band or from the ionization of a donor;

a hoe in a valence band may correspond either to
the electron in the conduction band or to the 
negatively charged acceptor.

Nd= Nd
o+ Nd

+

Na = Na
o+ Na

-

Neutrality condition   n + Na
-= p + Nd

+

( )[ ] 1/exp
10

+−
=

TkEE
NN

BFD
dd

( )[ ] 1/exp
10

+−
=

TkEE
NN

BAF
aa

For pure N-type semiconductor : only donors are available

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

Tk
EEnn

B

cFexp0 where
2/3

20 2
2 ⎟

⎠
⎞

⎜
⎝
⎛=

hπ
eBTmkn and 

2/3

20 2
2 ⎟

⎠
⎞

⎜
⎝
⎛=

hπ
hBTmkp

++= ddd NNN 0 And pNn d += +

For the simple case Nd
+>> ni therefore, n ~ Nd

+ = Nd-Nd
o

gB ETk <<

( )[ ] ( )[ ]⎟⎟⎠
⎞

⎜⎜
⎝

⎛
−−+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−=−≈
TkEE

N
TkEE

NNNn
BFD

d
BFD

ddd /exp1
1

1/exp
110

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Tk

E
Tk

E
n
n

B

F

B

c expexp
0

[ ] [ ]⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−+
≈

TkETkE
n
nNn

BDBc

d

/exp/exp1

1

0

d
B

d N
Tk

E
n
nn ≈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+ exp1

0

0exp1 2

0

=−+⎥
⎦

⎤
⎢
⎣

⎡
d

B

d Nnn
Tk

E
n
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solution 0

0

exp 1 1 4 exp
2

d d d

B B

n E N En
k T n k T

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − − + +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

At low temperatures, such that 1exp4
0

>>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Tk

E
n
N

B

dd

⎥
⎦

⎤
⎢
⎣

⎡
−≈

Tk
ENnn

B

d
d 2

exp0

A sufficiently large number of donors still retain their valence electrons, 

i.e. are not ionized.

The concentration of donor electrons in the conduction 
band has reached the maximum possible value, equal 
to the concentration of donor.

All donors are ionized.

At high temperatures,such that gB ETk ≈

0 exp
2

g
d i d

B

E
n N n N n

k T
⎛ ⎞

≈ + ≈ + −⎜ ⎟
⎝ ⎠

At the intermediate temperatures,such that 1exp4
0

<<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Tk

E
n
N

B

dd

constant=≈ dNn

A semiconductor doped with Nd donor electrons

dB ETk <

Dopant carriers are thermally 
excited to conduction band

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Tk
ENnn

B

d
d 2

exp~ 0

where 
2/3

20 2
2 ⎟

⎠
⎞

⎜
⎝
⎛=

hπ
Tkmn Be

Eg>>kBT>Ed

All carriers are excited (Saturation)
n~Nd

Eg~kBT
Intrinsic carriers are excited from 
valence band

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+≈+≈

Tk
E

nNnNn
B

g
did 2

exp0

A semiconductor doped with Na acceptor holes
Same results

Low Temperatures, kBT<Ea

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Tk
ENpp

B

a
a 2

exp~ 0

where 

2/3

20 2
2 ⎟

⎠
⎞

⎜
⎝
⎛=

hπ
Tkmp Bh

Intermediate temperatures, Eg>>kBT>Ea

p=Na

High Temperatures, Eg~kBT

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+≈+≈

Tk
E

pNpNp
B

g
aia 2

exp0

Saturation range(Ed, Ea< kBT< Eg)

N-type : n ≈Nd>> p dominated by electrons 

electrical conductivity hed epeN μμσ +≈

Hall coefficient
eNen

R
d

H
11

−≈−≈

P-type : p ≈Na>> n dominated by holes 

electrical conductivity eha eneN μμσ +≈

Hall coefficient eNep
R

a
H

11
≈≈
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Summary
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Chapter One   Crystal structure

1. Periodic arrays of atom

Lattice +basis=crystal structure

332211 auauauT rrrr
++=

Translation operator

Translation vectors ),,( 321 aaa rrr

332211' auauaurr rrrrr
+++=

Every lattice point

vectorlattice,, 321 =aaa rrr

2. Primitive cell -A minimum volume cell

Primitive translation vectorsvectorlattice,, 321 =aaa rrr

Wigner-Seitz Primitive cell

3. Bravais lattices One atomBasis

A Bravais lattice  is a lattice in which every 
lattice point has exactly the same environment.

4. Primitive cell: A minimum volume cell.

conventional cell: more obvious relation with 
the point symmetry operation

5. Directions and planes in crystals

6. Most common crystal structures :

1. Simple Cubic lattice  

2. Body Centered Cubic lattice 

3.Face Centered Cubic lattice : 

Chapter Two Reciprocal Lattice

1. Various statements of the Bragg condition

λθ nd =sin2 k GΔ = 22k G G• =

2. Reciprocal lattices Vectors

Chapter Three Crystal Binding

Types of bonds

(a)  Van der Waals (Molecular)   
Electrons localized among atoms

(b) Covalent     Electrons shared by the neighboring atoms
(c)  Metallic      Electrons free to move through sample
(d)  Ionic           Electrons transferred to adjacent atoms
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Chapter Four Phonons I Crystal vibrations. 

1. Vibrations of crystal with monatomic basis

)()( 11 ssssLRs uuCuuCFFF −+−=+= −+

)2( 112

2

sss
s uuuC

dt
udM −+= −+

2
sin4 ka

M
C

=ω

Dispersion relation

2. Brillouin zone 

Start at reciprocal lattice
Bisect all G vectors with planes

Enclosed volume is Brillouin zone 

3. Two atoms per primitive basis

Dispersion relation

4. Periodic boundary conditions (Born-Karman)

Phonon: particle-like properties
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Chapter Five Phonons II. Thermal Properties

• Phonon heat capacity
• Anharmonic crystal interactions
• Thermal conductivity

Einstein model(1907)

Debye model

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎠
⎞

⎜
⎝
⎛=

Dx

x
B

g e
xdxTk

v
VU

0

34

32 12
3

h

h

π

( )∫ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Θ

=
Dx

x

x

D
BV

e
exdxTNkC

0
2

43

1
9

1. Phonon heat capacity

2. Phonon thermal conductivity

The flux of the thermal energy
dx
dTjU κ−=

r

3. Thermal expansion

Tk
C
gx B24

3
=

4. Phonon-phonon scattering

Chapter Six Free Electron Fermi Gas

1. Free electron mode
treat conduction electrons as free particles

2. DOS

επ
ε 1

2
)(

h

LmD =

In three dimensions ( ) ε
π

ε
2/3

22

2
2

⎟
⎠
⎞

⎜
⎝
⎛=
h

mVD

In one dimensions

3. Effect of temperature on the Fermi-Dirac distribution

( )
⎩
⎨
⎧

>
≤

=
εε
εε

ε
,0

,1 FfT=0

Finite temperatures

( )[ ] 1/exp
1)(

+−
=

Tk
f

Bμε
ε

3. Free electrons contribution to heat capacity

( )

F
B

B
FB

BFe

T
TNk

Tk
Tk

NTkDC

2

2
22

2

2
1

2
3

33

π

ππε

=

==

4. Electron conductivity and Ohm’s law

E
m

neEe
m
enJ

r

h

r
hr ττ

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= EJ

rr
σ≡
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5. Motion in magnetic field

dt
kdEqF
r

h
rr
==

dt
kdBk

m
qBvqFB

r

h
rrhrrr
=×=×=

neBj
E

R
x

y
H

1
−=≡Hall coefficient

Hall resistivity
H

x

y
H BR

j
E

==ρ

6. Thermal conductivity of metal

τπκ T
m

nkB
e

2
2

3
1

=

Chapter Seven Energy Bands

1. Nearly free electron model

add the periodic potential of the ion cores to 
free electrons

Energy Band Theory

2. Bloch’s theorem

( ) ( ) exp( )u iΨ = •k kr r k r
The alternative form of Bloch theorem

( ) exp( ) ( )iΨ + = • Ψk r R k R r
The strict proof of Bloch theorem

3. Origin of the energy band and gap

energy band: due to the periodicity of lattice

energy gap:due to Bragg reflection of Bloch waves

4. Kronig-Penny Model

sin( ) cos( ) cos( )aP a ka
a

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

K K
K

5. Wave equation of electron in periodic potential

2
2

' '
'

( ) 0
2 k G G G k G

G

k G C U C
m

ε − − −

⎛ ⎞
− − + =⎜ ⎟

⎝ ⎠
∑h

6. Empty lattice approximation

7. Brillouin zone of several kinds of lattice

8. Approximate solution near a zone boundary

1. Considering a wavevector exactly at zone 
boundary at first Brillouin zone boundary ½ g

C( ½ g) and C(- ½ g) is important coefficients.

22

2 2
gU U

m
ε λ ⎛ ⎞= ± = ±⎜ ⎟

⎝ ⎠
h

)2/exp()2/exp()( igxigxx −±=ψ

2. Near the zone boundary

2

2

0 0 0 ( 2 )
0 0 ( )

00 0 ( )
0 0 ( )
0 0 0 ( 2 )

k g

k g

k

k g

k g

U C k g
U U C k g

U U C k
U U C k g

U C k g

λ ε
λ ε

λ ε
λ ε

λ ε

−

−

+

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −
⎜ ⎟⎜ ⎟ =−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− +
⎜ ⎟⎜ ⎟

− +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

O M

O

2 2 2( ) 1
2K

KU
m U

λε λ ⎛ ⎞= ± + ±⎜ ⎟
⎝ ⎠

%

%h
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3. Number of orbitals in a band

Each primitive cell contributes exactly one 
independent value of k to each energy band.

there are 2N independent orbitals in each energy 
band with account taken of the two independent 
orientations of the electron spin.

Explain: crystal will be a metal, or an insulator?

Chapter 8   Semiconductor Crystal

1.Band gap

Two types of semiconductors

2. Equation of motion

1 ( )ext k

dk F q E k B
dt

ε⎛ ⎞⎛ ⎞= = + ∇ ×⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
r

r
rr r r

h
h

3.Holes in semiconductors

A hole acts under the external forces as a positive 
charge +e.

Effective mass (band mass)

2

2 2

1 1 ( )
*

d k
m dk

ε
=
h

4. Intrinsic carrier concentration
3/2

22 exp
2

e B c

B

m k T En
k T
μ

π
⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠h

3/2

22 exp
2

h B v

B

m k T Ep
k T

μ
π

⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠h

( )
3

3/2
24 exp

2
gB

e h
B

Ek T m m
k Tπ
−⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠h

np =

Fermi level ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

e

h
Bg m

mTkE ln
4
3

2
1μ

5. Intrinsic mobility 

Electrical conductivity μσ ne=

µ:
E
vd=μmobility

6. Impurity conductivity
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