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Liquids and Liquid Crystals

Gases
* Similar to gases, liquids haven’t any atomic/molecular
* Gases have atoms or molecules that do not bond to order and they assume the shape of the containers.
one another in a range of pressure, temperature «  Applying low levels of thermal energy can easily break the
and volume. existing weak bonds.

« These molecules haven’t any particular order and
move freely within a container.
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Solid State Physics

The purpose of this course is to
present a survey of the phenomena
exhibited by solid state systems and
an introduction to the fundamental
physical principles, mathematic
concepts, and experimental techniques
important in the study of solid state
material.




Course information

¢ Textbook: Charles Kittel “Introduction to solid
state physics” 7t , 1995,

 Instructor : 1) Jian Gong (Lecture)
STB 0605
Tel: 4992967
2) Haiyun Xue (HW & Question)
Tel: ?

Schedule

Chapter One, Crystal structure
Chapter Two, Reciprocal lattice

Chapter Three, Crystal Binding and Elastic Constants
Chapter Four, Phonons I: Crystal vibration
Chapter Five, Phonons Il: Thermal properties

Chapter Six, Free electron Fermi gas
Chapter Seven, Energy bands

Chapter Eight, Semiconductor crystals
Chapter Nine, Fermi surfaces and metals

Final Exam.

Reference

Introduction to solid state physics, Charles
Kittel 1995.

Solid state physics, Giuseppe Grosso ,2006.
Solid state physics, Ashcroft, Neil W, 2004.
P, R,

B R, J5 48 8 Kbk, 1980.

VBl iR B 2, ST e, 2003.

B A3, 35 %, 2007.

Homework, Quizzes, and Exam

Your course grade will be determined
as follows:

* 20% from homework
Homework assignments will be given out in class.
* 10% from quizzes
The quizzes will be held at the beginning of class
after a topic has been concluded.
e 70% from final exam
The final exam will contain questions that may
come from any topic which has been covered in
class.

ﬁ% enomena Principles
5 Me?sllfﬂlgzlj . » Newton'’s laws
strength » Maxwell's EM equation

= Thermal = Thermodynamics and
. statistical mechanics
heat capacity

heat conduction =» Quantum mechanics

phase transition Schrodinger equation
=»Electrical Pauli exclusion principle
insulators % Order and symmetry
metals
semiconductors
superconductors
=QOptical
reflection, refraction
®Magnetic
ferromagnetism

What is a "Solid"?

A material that keeps its shape.
 can be deformed by stresses

* returns to the original shape if it is not
strained too much

-~ differs from “Fluid” ‘ Structure difference ? ‘

The atomic scale nature of materials has
known for less than 100 years.

The mechanical properties, especially strength against large strains,
have been part of human advances for thousands of years.



ELEMENTARY CRYSTALLOGRAPHY

(_ SOLID MATERIALS )

( CRYSTALLINE ) <POLYCRYSTALLINE> ( AMORPHOUS

(Non-crystalline)
Single Crystal

What is "Solid State Physics"?

e The body of knowledge is about

the fundamental phenomena and classifications of solid.

?

A characteristic behavior exhibited by classes of solids.

Such as ductile vs. brittle materials
metals vs. insulators
superconductors
ferromagnetic material

The basic understanding of such “fundamental
phenomena”has only occurred in the last 80 years.

Due to “quantum mechanics”

Aim of Solid State Physics

Solid state physics (SSP) explains the properties of
solid materials as found on earth.

The properties are expected to follow from
Schrddinger’s eqgn. for a collection of atomic nuclei
and electrons interacting with electrostatic forces.

The fundamental laws governing the behaviour of
solids are known and well tested.

Crystalline Solid

¢ Crystalline Solid is the solid form of a substance in
which the atoms or molecules are arranged in a
definite, repeating pattern in three dimension.

¢ Single crystals, ideally have a high degree of order, or
regular geometric periodicity, throughout the entire volume
of the material.

= Single crystal has an atomic structure that repeats periodically across
its whole volume. Even at infinite length scales, each atom is related
to every other equivalent atom in the structure by translational
symmetry

100 Years of
the Quantum

M. Tegmark and J.A. Wheeler
Scientific American, Feb_, 68 (2001)

,

Schrodinger
e
Bohr de Broglie #

Heisenbel
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1920s 1930s

Pauli #
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Chapter One
Crystal structure

Periodic arrays of atom
Fundamental types of lattices
Index system for crystal planes
« Simple crystal structure



Drusy Quartz in Geode Tabular Orthoclase Feldspar

4

Encrusting Smithsonite

Peruvian Pyrite

Calcite(CaCOj) crystal is made
from spherical particles.

Christiaan Huygen, Leiden1690

A crystal is made from spherical particles.
Robert Hooke, London 1745
depicted by RenéHaiiy,
Paris, 1822

* X-rays were discovered in
1895 by the German
physicist Wilhelm Conrad
Rontgen and were so named
because their nature was
unknown at the time.

¢ He was awarded the Nobel
prize for physics in 1901.

Wilhelm Conrad Rontgen
(1845-1923)

Bertha Rontgen's
Hand 8 Nov, 1895

Snow crystal

the most efficiem way 10 stack sphieres. Nature, 3 July 2003

Periodic arrays of atom

In 1912
Interference effects with Rontgen rays, Laue-1914

1. The crystals are composed of a periodic array of atoms.

2. the studies have been extended to include amorphous
or glasses and liquids.

In 1912 Zns



. Crystal structure
Solid: Crystal vs.  Amorphous (glassy)

¢ Importance: structure plays a major role in
determining physical properties of solids

» Determination: X-ray and neutron scattering are key
tools for determining crystal structure.
Competition between attractive (binding) force and repulsive force. Also microscopic techniques such SEM, TEM (bulk)
STM,AFM...(surface)

Ordered array of atoms Disordered arrangement

Regular array lowers system energy.

Complicated !--difficult to predict the structure of materials

Si surface : 6.Binning and H.Rohrer STM in 1986

« Deviation: There is no perfect crystal.

Many key properties depend on deviation
more.

Defects — imperfection in crystal
Phonons- lattice vibrations




Review
ELEMENTARY CRYSTALLOGRAPHY

(_ SOLID MATERIALS )

< CRYSTALLINE > <POLYCRYSTALLINE> < AMORPHOUS

(Non-crystalline)
Single Crystal

For SSP

m Symmetry of a crystal can have a profound influence
on its properties.

m Any crystal structure should be specified completely,
concisely and unambiguously.

m Structures should be classified into different types
according to the symmetries they possess.

crystal structure ?

ELEMENTARY

« A basic knowledge of crystallography is essential for
solid state physicists;
— to specify any crystal structure and
— to classify the solids into different types according to the
symmetries they possess.

» Symmetry of a crystal can have a profound influence
on its properties.

* We will concern in this course with solids with simple
structures.

Solid: Crystal vs.  Amorphous (glassy)

Ordered array of atoms Disordered arrangement
Competition between attractive (binding) force and repulsive force.

Regular array lowers system energy.

Deals with the geometric description of
crystals and their internal arrangement.

The branch of science  crystallography

CONTENTS

* Periodic arrays of atom
lattice translation vectors
Basis and crystal structure
Primitive lattice cell

» Fundamental types of lattices
2D lattice types
3D lattice type



a. Lattice translation vectors

What is crystal (space) lattice? Crystal
periodic array of atoms: point lattice + basis
Platinum Platinum surface Crystal lattice and . . . . .
structure of Platinum Point lattice —mathematical points in space
one replaces each atom by a geometrical point located at I Lattice +basis=crystal structure I

the equilibrium position of that atom.

crystal structure different choices for the basis
Bravais basis crystal
« An infinite array of lattice
points in space, * * + _...
« Each point has . ° . _. .
identical surroundings by %
to all others. . .
* Arrays are arranged b.“ K 3 k : . . +..=
exactly in a periodic . .
manner. ‘f'f,..........'b ............ Deen . * *
e Crystal structure can be obtained by attaching atoms, * + = i
groups of atoms or molecules which are called basis . . i *

(motif) to the lattice sides of the lattice point.

|Laﬁice +basis=crystal structure |

Attention
e Don't mix up atoms with .}.
1 /

lattice points

+ Lattice  points are /
infinitesimal  points  in
space )
¥
¥

Translation vectors

e Lattice points do not
necessarily lie at the
centre of atoms

To describe a CS, there three important question to answer: From the point r

1. What is the lattice?

2. What choice of a,,a,,a; do we wish to make? O

3. What is the basis?
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lattice vectors.
Crystal axes

/
The choice of lattice vectors is not unigue. Thus
)

KA ruma
|
one could equally well take the vectors aand b'as a
Smallest valume |:>| Primitive translation vectors |

® Not unique.

Not unique (2D) Not unique (3D)

2D Unit Cell example -(NacCl)

O0O00000
O0O0O0000
O0O00000
OO0O0000

We define lattice points ; these are points with identical
environments

b. Primitive Lattice Cell

A cell will fill all space by the repetition of suitable crystal
translation operations. ----A minimum volume cell.

® One lattice point per primitive cell.

2 Dimensions

- - - - - -
- > _ - - - -
. . a
Same for all primitive e e - -
cells P R . ~

(o popooy
POPOPOC
Popopog
POPODPO(J
CASAviTav A

it doesn’t matter if you start from Na or Cl
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lattice points need not be atoms

Wigner-Seitz Primitive cell in 2D (or 3D)

* Draw lines to connect a given lattice point to all nearby

lattice points.

* Draw bisecting lines (or planes) to the previous lines.

* The smallest area (or volume) enclosed.

‘c. Fundamental types of Bravais lattices ‘

Bravais lattices

Basis ——p Oneatom

Based on symmetries :

Translational — same if translate by a vector

Operation Element
Rotation AXis
Reflection Plane
Inversion Point
Rotoinversion Axes

te Bravais

P9 poEeO
CIICIC NG,
e o E9 O
CICICIN G,

are all the same - empty space is not
allowed!

Highest symmetry
An atom --- the center of unit cell

All the space of the crystal
may be filled by these primitive cells

2) Rotational-same if lattice is rotated by |an angle about a point

2-fold by 180° @
3-fold by 120° A

120

mThe axis is called n4fold if the angle of rotation is 2




3) Mirror symmetry —same if reflected about a plane

4) Inversion symmetry —same if reflected through a point
(equivalent to rotation 180 and mirror L rotational axis

Xa X4

lique lattice | a,# a,, $+60°90°

a,= 2a,c05d

Unit

Five Bravais lattices in two dimensions

ectangular lattice | a,+a,, $=90°

agonal lattice

e
vy

threefold axis (triad)
fourfold axis (tetrad)
is (he

mirror line

A Bravais lattice is a lattice in which every
lattice point has exactly the same
environment.

unit cell =Primitive cell unit cell # Primitive cell

UNIT CELL

{ Primitive } {Conventional & Non-primitive}

= More than one lattice point per cell
= Integral multibles of the area of

= Smallest area in 2D, or

= Single lattice point per cell
=Smallest volume in 3D ‘

primitive cell
Simple cubic(sc) Body centered cubic(bcc)

Conventional = Primitive cell Conventional # Primitive cell




Three-Dimensional lattice types

conventional cell: more obvious relation with the
point symmetry operation

. Simple Cube
sometime a

4]
ey -y
Primitive cell L a
H ie
. i,
conventional cell / i a,
{) f. XCHOO_012

The seven crystal systems divided into fourteen Bravais lattices

System Number of lattices Unit cell C] teristic
characteristics ry elemenis

Triclinic - g a,#a,#a,

aFEfFEY

a,Fa;7Fa,

o= ;‘_{ =90 # ¥

Monoclinic

Orthorhombic  4- L a,#a,#

entered
Tetragonal . Simple, BCC
Cubic 3. Simple, BCC, FCC

Trigonal

Hexagonal

Orthorhombic (a=pf=y=907)

IETZRh%R

return Fee 16

Face-Centered Cube

sometime
Primitive cell

conventional cell

Body-Centered Cube

(e i XCHOO! D13

kA

XCHO0L_014

TRICLINIC (a#B#) € a

=ihih R
MONOCLINIC (p=y=90° «)
R TR
1/ //:? /]
e !f
'

return

Tetragonal (a=p=y=90°)
EF&RA

return 17



Cubic (a=p=y=90°) Trigonal Hexagonal

THRT (a=p=y<120°, +#90°) (a=p=90° y=120°)
=fy (W) R RELLES
a

ay

Simple

Simple

Simple
return 8 19

, , Characteristics of cubic lattices
Three common Unit Cell in 3D

Nearest- neighbor 3 a
distance a ?"‘ 2
T 2
Packing fraction” —=0.524 ﬁ 7=0.680 £ a=0.740
6 8 6\

aThe packing fraction is the maximum proportion of the available volume
that can be filled with hard spheres.

simple cubic body-centerad cubic {ace-centered cubic

= lamica pararmater, o A

"




Review « Primitive Lattice Cell

L] 1 i ’)
What is lattice? ® One lattice point per primitive cell.

periodic array of atoms =  point lattice ~ + basis ® A minimum volume cell
® Not unique. Wigner-Seitz Primitive cell

The seven crystal systems divided into fourteen Bravais lattices

. ) System Number of lattices Unit cell
* Bravais lattices characteristics
a lattice in which every lattice point has exactly Triclinic . Si Sy
the same environment. aFPFEY
Monaoclinic ) a,Fa,7ay
Five Bravais lattices in two dimension a=p=900#y

Ortharhombic

Tetragonal
Cubic . Simple, BCC, FCC

Trigonal : Simple
o = =y<1200% 90

Hexagonal * Simple Fay
90e, y =120°

Crystal Lattice

{ Bravais Lattice (BL) } {Non—Bravais Lattice (non—BL)}
{

1
= Atoms can be of different kind
= Some |lattice points are not
equivalent
=A combination of two or more BL

= All atoms are of the same kind
= All lattice points are equivalent




IIl. Directions and planes in crystals
a. Crystal Directions

* We choose one lattice point on the line
as an origin, say the point O. Choice of
origin is completely arbitrary, since
every lattice point is identical.

T
« Then we choose the lattice vector
joining O to any point on the line, say
point T. This vector can be written as; o) il
R=n;a+n,b+ng T

« To distinguish a lattice direction from a 7
lattice point, the triple is enclosed in * [111]
square brackets [ ...] is used.[n,;n,n4]

* [nn,n,] is the smallest reduced integer Fig. Shows
of the same relative ratios. [111] direction

8

Examples Cubic has highest symmetric directions
: g 1
7 [112]
/-7 - [001]
E I.
[[210]] 1 :
0
\u ! 0
o ¥
. fommn=s S Pt
7 ¥ 1 /
H ‘ [100]
X=1,Y=%,Z=0 X=% ,Y=%,Z=1
[1%0] = [210] el = [112]
9 10
Negative directions Examples 1
* When we write the z z
direction [n,n,n;] depend Zdirection
on the origin, negative
directions can be written .
as [110] -\\
Origin ~[110] I
- L - X direftio - \-\‘ o A ¥
(origir}) O [100]— v 5
R=n,a+n,b+ng - Y direction irection R X * Note new
+  Direction must be X direcuﬁn/ | ’ onett

smallest integers - Z direction __
X=1,Y=0,Z=0=> [100] X=-1,Y=-1,Z=0c=>[110]



Examples 2 Crystal planes

New « Within a crystal lattice it is possible to identify sets of
u,.]-Lﬂi" : equally spaced parallel planes. These are called lattice
K T planes.

(0,0,0) | ¢ In the figure density of lattice points on each plane of a
. : set is the same and all lattice points are contained on
W71  Yee=q---- e I each set of planes.

The set of |
(a) () planes in T b

2D lattice.
X=1 ,Y=1,Z=-1/6 :
We can move vector to the origin. [(11-1/6] = 561 7

Miller Indices

Same lattice , two crystal planes Miller Indices are a symbolic vector

representation for the orientation of an atomic
plane in a crystal lattice.

Notes:

1) Determine the intercepts of the plane along each
of the three crystallographic directions

2) Take the reciprocals of the intercepts

NCHOOI_042_01 NCHOOI_042 02

3) If fractions result, multiply each by the denominator
of the smallest fraction

5 16
Example-1 Example-2
H AXi x| v | z r
Xis Axis X | v z
Intercept 1 co oo Intercept
points U (\/ p pointsp 1 1 R
Reciprocals | 1/1 |1/ oo - Reciprocals | 1/1 | 1/ 1 y
I
vl R 1] 0] 0 s, 5= 11 [ o
) 100 Miller Indices (100) ) 10,0 Miller Indices (110)




Example-3 Example-4

z 4
— AXis X |y z AXis X Y | z
— I I
e 11| w1 [ 1] -
I Reciprocals | 1/1 | 1/1 | 1/1 Reciprocats | 1/(%) | 1/ 1 1/
| Raio | 1] 1|1 =
¥ Smal!est 2 1 0
. . . Ratio
100 Miller Indices (111)
Miller Indices (210)
19 20
Example-5 Example-6
Axis a b c Axis a b c
e | 1 [ | w R EBE

Reciprocals 11 1/ 00 | 1/(¥2) Reciprocals | 1/-1 1 | 1U(%2)

e |1 oo w5 El 0 B
Miller Indices (102) Miller indices  (102)
¥
Example-7 .Slx kinds of p:lanes m. cubic crystal )

Lorstion SIF Arimlor uvosiypd (Lorafoisfsusiplie1hto fwwe bngior o] i

Y-intercept=1
—
Y

X Plane (111}
X-intarcept=1

23 24



Coordination Number Atomic Packing Factor

¢ Coordination Number (CN) : The Bravais lattice points e Atomic Packing Factor (APF) is defined as the
closest to a given point are the nearest neighbours. volume of atoms within the unit cell divided by the
volume of the unit cell.

* Because the Bravais lattice is periodic, all points have
the same number of nearest neighbours or coordination
number. It is a property of the lattice. Volume of Atoms in Unit Cell

APF
Volume of Unit Cell

* A simple cubic has coordination number 6; a body-
centered cubic lattice, 8; and a face-centered cubic
lattice,12.

25 26

Most common crystal structures : Simple Cubic lattice

1. Simple Cubic lattice
conventional cell : 1 atom/cube

6 nearest neighbors

-

27 28

. 2. Body Centered Cubic lattice
Packing Factor of SC v

Conventional cell : 2 atoms/ cube

APF = 0.52 for simple cubic A Not a primitive lattice
atom

. ’ - A volume ( X
|:| unit cell ; i:n: (.53 4 Ziom 8 nearest neighbors
APF = S I
contains 8 x1/8 =
1atom/unit cell volume Alkali metals : Li, Na, K, Rb, Cs
unit cell Ferromagnetic metals : Cr, Fe
Transition metals : Nb, V, Ta, Mo, W

« BCC lattice + single atom basis
29 « SC lattice + basis of 2 atoms at (0,0,0) and (1/2,1/2,1/2) 30



Face Centered Cubic (FCC)?

—~_
L v |
/ 4%
"~ -
.

Packing Factor
Numbers of nearest neighbors
Primitive translation vector

The angle between two adjacent edges
Edge

31

Body-centered Cubic lattice

Primitive cell :
Rhombohedron

1. Edge

2. the angle between
two adjacent edges is
109028’

33

Packing Factor of BCC

AR
V3a

—

L V2a —-‘

Via = 4R

Primitive translation vector

APF scc = —20m. = 0,68

unit cell

atom
volume

unit cell
2| 2 oazsapp 4 @tom
3

APF = ——
volume

unit cell

34




Review

1. Directions and planes in crystals

Miller Indices

Notes:

1) Determine the intercepts of the plane along each
of the three crystallographic directions

2) Take the reciprocals of the intercepts

3) If fractions result, multiply each by the denominator
of the smallest fraction

3. Face Centered Cubic lattice :

* There are atoms at the corners of the unit cell and at the
center of each face.

» Face centered cubic has 4 atoms so its non primitive cell.

¢ Many of common metals (Cu,Ni,Pb..etc) crystallize in FCC
structure.

Primitive translation vector

Rhombohedral Primitive cell

The arl%e between two adjacent edges : 60°
Edge V2.

2. Coordination Number
number of nearest neighbours
SCC 6
BcC 8

3. Atomic Packing Factor

Yolume of Atoms in Unit Cell
VYolume of Unit Cell

AFF =

sCC 052
BCC 0.68 ,

Conventional cell : 4 atoms/ cube

Not a primitive lattice

12 nearest neighbors

° Noble metals : Cu, Ag, Au
(1/2,1/2,0) Transition metals : Ni, Pd, Pt,
Inert gas solids : Ne, Ar, Kr, Xe

¢ FCC lattice + single atom basis

« SC lattice + basis of 4 atoms at (0,0,0), (1/2,1/2,0)
(1/2,0,1/2),and (0,1/2,1/2)

Packing Factor of FCC

atom
— A volume
unit cell 4
|3 m0sa3 T atom
APF= ——— —
volume
'7(1 =4R unit cell



4. Hexagonal Close-Packed lattice

m A crystal system in which three equal coplanar axes
intersect at an angle of 60 , and a perpendicular to the
others, is of a different length.

—_—

[T

a,, a,, and ¢ do not construct a primitive
lattice
a,, &, and a; construct a primitive lattice

12 nearest neighbors

Transition metals : Sc, Y, Ti, Zr, Co...
Basal Plane IIA metals : Be, Mg

Hexgonal lattice + basis of 2 atoms at (0,0,0) and (2/3,1/3,1/2)

1t step: Spheres are
arranged in a single closed-
packed layer A by placing
each sphere in contact with
six others.

2t step: A second similar
layer bottom B may be
added by placing each
sphere of B in contact with
there spheres of the bottom HCP (-A-B-) FCC (A-B-C)
layer.

3 step: A third layer C
may be added in two way.

HEXAGONAL SYSTEM

LY

F
9 -

Close-Packed lattice

Hexagonal Close-Packed lattice HCP

Cubic Close-Packed lattice FCC




Packing

HCP lattice ABABAB...

Sequence ABABAB.. Sef"s‘i‘::‘ﬂ‘z AAAAcubic
-hexagonal close pack p
Sequence ABAB...

Sequence ABCABCAB..

-face centered cubic close pack - body centered cubic

FCClattce ABCABCABC .. # “

5 Diamond Structure

e The diamond lattice is consist of two interpenetrating
face centered bravais lattices.

* There are eight atom in the structure of diamond.

« Each atom bonds covalently to 4 others equally
spread about atom in 3d.

Close pack

Diamond structure : two FCC displaced from each other by 4
of a body diagonal
FCC lattice + basis of 2 atoms at (0,0,0) and (1/4,1/4,1/4)

@ —@— =

NCHOOI_044

Zn

o

(o '—@— 0)
Tetrahedral bonding : 4 nearest neighbors LT Ny
12 next nearest neighbors

The maximum packing fraction = 0.34
Si, Ge, Sn, C, Zn3, GaAs, ... 35 18




Some atoms form multiple stable structures:

for example, C—diamond or graphite (hexagonal)

graphite diamond

An STM image of a graphite
surface clearly shows the
interconnected 6-membered
rings of graphite

Many crystals undergo structural changes with T, P:

Fullerene for example,

&-ferrite a-ferrite
i H
I BCC Liquid
—————io—— o Temperature

JETTS 2 C

Graphene

MOST IMPORTANT
CRYSTAL STRUCTURES

1. Sodium Chloride Structure

*  Sodium chloride also Do :f"*‘
crystallizes in a cubic lattice, Lo
but with a different unit cell. .

. ) ) LAY

e Sodium chloride structure """““’!‘&{ o
consists of equal numbers of
sodium and chlorine ions
placed at alternate points of a
simple cubic lattice.

e Each ion has six of the other
kind of ions as its nearest
neighbours.

23




» If we take the NaCl unit cell and remove all the red ClI
ions, we are left with only the blue Na. If we compare
this with the fcc / ccp unit cell, it is clear that they are
identical. Thus, the Nais in a fcc sublattice.

e This structure can be
considered as a face-
centered-cubic Bravais lattice
with a basis consisting of a
sodium ion at 0 and a chlorine
ion at the center of the
conventional cell,

e LiF,NaBr,KCl,Lil,etc
¢ The lattice constants are in
the order of 4-7 angstroms.

25 26

2. Cesium Chloride Structure Cs+Cl-
e The translational symmetry of this structure is

. Cesium chloride crystallizes in a cubic % that of the simple cubic Bravais lattice, and is
lattice. The unit cell may be depicted as 3 described as a simple cubic lattice with a basis
showﬁ (Cs+ is teal, Cl- s gold) consisting of a cesium ion at the origin 0 and a

chlorine ion at the cube center

+  Cesium chloride consists of equal numbers of
cesium and chlorine ions, placed at the points
of a body-centered cubic lattice so that each
ion has eight of the other kind as its nearest
neighbors.

¢ CsBr,Csl crystallize in this structure.The lattice
constants are in the order of 4 angstroms.

27 28

Zn8, CuF, CuCl, ... compounds
Znicblende Cds Photoconductor

GaAs, GaP, InSb, ... -V semiconducting compounds

o o . = FCC lattice + basis of two atoms




Zine Blende Wurtzite
underlying lattice is foe underlying lattice is hep

Chapter Two Reciprocal Lattice

Diffraction of waves by crystals
Scattered wave amplitude
Reciprocal lattice vectors

Fourier analysis of the basis

33

(1) Direct observation—see atoms directly on surface

Quantum mechanical
tunneling

STM picture of atoms IV-VI Quantum Dot AFM picture
n Si(111 rf From M. Pinczolits, Institute of
on Si(111) surface Physics, University of Lintz and

American Institute of Physics 35

Homework

11, 12,13

How do we determine the structure of crystal ?
----bulk and surface structures

One can experimentally determine crystal structures

from real space

or

from diffraction to obtain the lattice
structures in reciprocal space.

(2) Diffraction of Radiation waves ---traditional method

Electron diffraction pattern
of(111) diamond surface

Diffraction regime: 4 ~d

scattering are sensitive to the crystal structure



Source Detector

Radiations : Detections :

1895 X-ray (Photon) Intensity vs. Direction

1932 Neutron Intensity vs. Energy ()
1897 Electrons

" Nobel prizes
Energy : Photon{KaV] ) X-ray Diffraction:
Neutron(0 D1eV) Rontgen, 1901,; von Laue 1914;
' Bragg, 1915

Electron microscopy/diffraction:
Ruska, Binig, &Rohrer, 1986
Neutron diffraction:

37 Brockhouse & Shull 1994

1012

Arnold Sommerfeld,1868-1951 Max von Laue,1879-1960

39

In 1912 ZnS



The Nobel Prize in Physics 2009

"for groundbreaking achievements concerning the
transmission of light in fibers for optical communication”
"for the invention of an imaging semiconductor circuit —
the CCD sensor"

1R
Charles K. Kao Willard S. Boyle  George E. Smith

Review

1. crystal structure

Periodic arrays of atom

| Lattice +basis=crystal structure |

lattice translation vectors

Chapter Two Reciprocal Lattice

Diffraction of waves by crystals
Scattered wave amplitude
Reciprocal lattice vectors

Fourier analysis of the basis

WC‘ ongratulations to Professor Charles K. Kao
/ . i E'Nohel Laureate in Physics 2009

r’
A Short Biography of Professor Kao

1533 Bom In Shanghal on 4 November

1557, e the chegronss of B5¢ and PRO from the Unkversty of Londen
1965

1966 Published 3 paper whith proposed sing glass fibres 38 3 eonductor for epeic
commrication, ushering in the era of optic fibre communication

1970 Joined CLIHK a5 Reader and chair of the then new Department of Elkectronics, later
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2. Primitive Lattice Cell

® One lattice point per primitive cell.
® A minimum volume cell
® Not unique.

3. Bravais lattices

2D 3D
4, Directions and planes in crystals
Crystal Directions

Crystal plane  Miller Indices
5. Most common crystal structures

How do we determine the structure of crystal ?
----bulk and surface structures

One can experimentally determine crystal structures

from real space

or

from diffraction to obtain the lattice
structures in reciprocal space.




(1) Direct observation—see atoms directly on surface (2) Diffraction of Radiation waves -~traditional method

Quantum mechanical
tunneling

Electron diffraction pattern
of(111) diamond surface

Diffraction regime: 4 ~d

scattering are sensitive to the crystal structure

1V-VI Quantum Dot AFM picture
STM picture of atoms From M. Pinczolits, Institute of
. Physics, University of Lintz and
on Si(111) surface American Institute of Physics

LIGHT INTERFERENCE Diffraction from a particle and solid

Diffraction Pattern

Single particle
- e To understand diffraction we also have to
consider what happens when a wave

e interacts with a single particle. The

particle scatters the incident beam

uniformly in all directions

= Waves bend siightly Screen-lke

e of et el Solid material
yd

* What happens if the beam is incident
on solid material? If we consider a

'%;

crystalline material, the scattered
el beams may add together in a few
directions and reinforce each other to
give diffracted beams

Detector

Radiations : Detections :

1895 X-ray (Photon) Intensity vs. Direction

1932 Neutron Intensity vs. Energy ()

Neutron(0 01eV)

1897 Electrons [ X-Ray } [ Neutron } [ Electron }
Nobel prizes I I I
X-ray Diffraction:
Rontgen, 1901,; von Laue 1914; A =1A° A =1A° A =2A°
Bragg, 1915
Electron microscopy/diffraction: E-10%ev E~0.08ev E~150ev
RUSka' Blnlg’ &_Rohrer, 1986 interact with electron interact with nuclei interact with electron
Neutron diffraction: Penetrating Highly Penetrating Less Penetrating
Brockhouse & Shull 1994




X-RAY

e X-rays were discovered in
1895 by the German
physicist Wilhelm Conrad
Réntgen and were so named
because their nature was
unknown at the time.

Max von Laue,1879-1960

¢ He was awarded the Nobel
prize for physics in 1901.

Wilhelm Conrad Réntgen
(1845-1923)

In 1912 ZnS

. . . Diffraction of waves by crystals

X-Ray Diffraction & Bragg Equation

Bragg presented a simple explanation of the diffracted beams

from a crystal

« English physicists Sir W.H. Bragg
and his son Sir W.L. Bragg
developed a relationship in 1913
to explain why the cleavage faces
of crystals appear to reflect X-ray
beams at certain angles of

incidence (theta, 0).This L7, -

i i - Atomic
observation is an example of X-ray Sir William Henry Bragg (1862-1942), s \
wave interference. William Lawrence Bragg (1890-1971) planes

0 1915, the father and son were awarded the Nobel prize
for physics "for their services in the analysis of crystal
structure by means of Xrays".

condition for constructive interference from a crystal
2dsind=nA Bragg Law

Laue theory : X-ray scattering

Consider a general scattering model,

outgoing beam

Bragg law is greatly oversimplified. -— but

1. No information about intensity and width of the peak.
2. Negligence of difference in scattering from different atoms.

3. Negligence of distribution of charge around atom.




Phase shift of different waves

R'—@'t)
=

Phase shift 1:’__{}_{1 < n(DE, exp

.-'\q.\—k:of Kef
—k)et

expitE-E—mrl

1 i’!x‘.‘{pl—i_\l\: *T)E, S

E,‘;piiE.l_{.—(-'J t)

Ap(—iAk « TV
B I

E<(R)« E,

Local charge density Phase factor

Recall in one dimension

p:integer, n,:complex constants

o
dx n(x) exp(—i TPy

2np is a point in the reciprocal lattice or Fourier
a space of the crystal.

Reciprocal Lattice Vectors

, are primitive vectors of the crystal lattice,

we consfruct the axis vectors El_‘ [_-,_1 b, of the reciprocal lattice

‘1_;‘ are primitive vectors of the reciprocal lattice and

[0, wheni# j
,wheni=j

satisfy b ed, =276,

Reciprocal lattice vector G =v,b, + v,b, +v;b,
where v,, V,, V, are integers.

Crystal : periodic charge distribution

Electron clouds centered on atoms

o o ° ° o electron distribu
° o o ° o around th m
0000

Consider one charge per each lattice site
crystal translation vector T = u,d, +u,d, +u,d,
any local physical property of crystal is invariant under T

Electron number density n(7) is periedic : \n(t+T)=n{(7 )

can be expanded in a Fourier series

n(®)=> ng

Reciprocal lattices Vectors

XCHOO_047

GJ’JI.I’I_JJ:
OP=p

od =27

Reciprocal Lattice to SC Lattice

Crystal lattice
Primitive translation vectors :
A=AxEian =y A =a7

Veolume = a*

Reciprocal lattice

Y Primitive translation vectors :
2 7) 7
. 27T a . & . & & o
by =—=: by=—7%; b;=—%
a - a : a

simple cubic lattice with side 2x/a

The first BZ : boundary planes are normal to six vectors £, . +b,. +b,
at their midpoints

with volume =(2n/a)® 23




Reciprocal Lattice to BCC Lattice

Crystal lattice

a, .
a —:( X+V+2)
a :ﬂ(i V+Z2)

- 4, 2 a
a, =—(Xx+y-2)
3T 5 3

Volume = a%2

Primitive translation vectors :

Reciprocal lattice

Primitive translation vectors :

- T o 2. . - 2W. .

b =—(F+2): b,=—(Z+x): b; = “(x +V)
a a a

FCC lattice

Role of reciprocal lattice in X-ray diffraction

E, =E, *F
scattering amplitude F = [dV n(r) exp[i(k — k') e 1]
- periodic function nf;

ng exp(iG e 1)
G

»F=Fng[dVexp (G & l‘-;)] o7}

=¥ ng[dVexpi 3 Elol}

G

Vn, when Ak =G

Therefore, F ={ 0 when Ak # G

Alternate expression : Laue equations
Diffraction condition Ak i
Reciprocal lattice vector G = v,b

1913 Ewald

i
///

incident k "\

An Ewald construction

Reciprocal Lattice to FCC Lattice

Crystal lattice
Primitive translation vectors :

= 8.0 2
a, =—(¥+:2);
a, 2(, )

— ad. .. =
a, _E{_ +X);

. a . A
a, —E(.\T}J

Volume = a4

Reciprocal lattice
Primitive translation vectors :

2T . a s T . -
b, = (-x+y+2) b, = (xX-y
a a

BCC lattice

o
s PE o o o
+2), by=—(X+y-2)

In the elastic scattering

For reciprocal lattice G,

s also reciprocal lattice

® (3 =G 2 Diffraction condition

Same as the Bragg law

Let G 11lﬂ)l + 1-:5? + E:f)zl

spacing between adjacent lattice planes d,, G|

>

2 dsinf = n. Bragg result

d is the spacing between adjacent lattice planes w/. indices h/n, kin, £in

X-ray diffraction by a crystal

r':

E,*F

scattering amplitude F = [dV n(T) cxp[—r’AJ»i *r]

charge density

Real crystal : charge distributed through out primitive cell,
not just at the lattice point

I'= Ty T+ 2

Electron

peint Basis of cloud
atom




F = [d*F n(f) exp[-i Ak ¢ 7]
= Z erlsﬁnj[ﬁ;cxp[—:’.\l\:oT'Illu__“']cxp[—:'.\k:oT‘J]cxp[—r’.\L:oﬁ]

LTI

Structure factor — basis of atom

Taris =
Sg = Zf exp[-iG-=1]
]

electron cloud
.. basis F .
RIIES Diffraction — Ak =G : expl-iakei, .. )
In general,
f; is an atomic property and is different for each basis atom.
L F=N¥exp[-iGe ;::].I'(l"gi n,(plexp[-iGe p]

% .
S bavis f, atomic form factor
=N T fexp[ iGe 1]
!

S structure factor

Hence F,=NS for outgoing beam K=k+G

BCC crystal = FCC crystal =

simple cubic lattice + basis of (0,0,0) and (1/2,1/2,1/2) simple cubic lattice + basis of (0,0,0), (1/2,1/2,0),(1/2
- =0 and x 2 0
» [ x=y=z=0. [

S{v v vy {14

Hence,
Hence,

Diffraction only for v,+v,+v, even
Diffraction only for all v,
Allowed peaks :

A1087(200) < ) o gy ¢ . .
- - - 3 (200) (111) (220) (311) (222) (240) (331) ...
(101) 2487 = = b
L7 (211)

{2217
(222)

(120) (121) (123)

(100) — destruction interference

Howwork

Summary of cubic structures First reflection
« Please calculate primitive translate vectors

Simple cubic All b, k, £ allowed (100) of crystal lattice and reciprocal lattice to
BCC and FCC.

Body-centered cubic Only h+k+¢ even allowed (110)

Face-centered cubic | h, k, £ all odd or all even allowed  (111) ‘ P51 2.1 &2.2 ‘




Topic:

How do we determine the structure of crystal
experimentally?

Email to ndgong@imu.edu.cn



Review

1. crystal structure

Periodic arrays of atom

I Lattice +basis=crystal structure I

lattice translation vectors

X-Ray Diffraction & Bragg Equation

« English physicists Sir W.H. Bragg
and his son Sir W.L. Bragg
developed a relationship in 1913
to explain why the cleavage faces
of crystals appear to reflect X-ray
beams at certain angles of
incidence (theta, 0).This
observation is an example of X-ray
wave interference.

William Lawrence Bragg (1890-1971)

0 1915, the father and son were awarded the Nobel prize
for physics "for their services in the analysis of crystal
structure by means of Xrays".

Bragg law is greatly oversimplified. -— but

1. No information about intensity and width of the peak.
2. Negligence of difference in scattering from different atoms.

3. Negligence of distribution of charge around atom.

Sir William Henry Bragg (1862-1942),

2. Primitive Lattice Cell

® One lattice point per primitive cell.
® A minimum volume cell
® Not unique.

3. Bravais lattices

2D 3D
4. Directions and planes in crystals
Crystal Directions

Crystal plane  Miller Indices
5. Most common crystal structures

Diffraction of waves by crystals

Bragg presented a simple explanation of the diffracted beams
from a crystal

Incident rays Reflective rays

=

Atomic 4‘-—%

planes

condition for constructive interference from a crystal
2dsind=nA Bragg Law

Laue theory : X-ray scattering

Consider a general scattering model,

outgoing beam

Incident beam : plan

_ilEsi-at)



Phase shift of different waves Crystal : periodic charge distribution

Electron clouds centered on atoms
o o ° ° o electron distribu
° o o ° o around th m
0000

- R' Consider one charge per each lattice site
= S —... expik'eR'=m't) -
Phase shift El(R) «n(T)E, Iﬁ crystal translation vector T

Wd, +,d, + Ui,

1\, ) f‘ ) . K R. N any local physical property of crystal is invariant under T
Ao =k < - = eXpikeR-mt
Ap=ker—k'eT = n(F)exp(-iAk « HE, SLUE R =0T

=S Electron number density n(7) is periedic : (n{tr+T)=n{7 )
—k)et
can be expanded in a Fourier series

E5(R) = Iz“W Xp(-iAK o TV n(r) ch‘.-
G

Local charge density Phase factor

Reciprocal lattices Vectors
Recall in one dimension

XCHOO1 47
p:integer, n,:complex constants

GJ’JI.I’I_JJ:
OP=p

od =27

o
dx n(x) exp(—i TPy

2np is a point in the reciprocal lattice or Fourier
a space of the crystal. O

Reciprocal Lattice Vectors <:> S
If a'1 . :-.i21.'..ié are primitive vectors of the crystal lattice,

we construct the axis vectors t'll s h t;‘ of the reciprocal lattice w

Reciprocal lattice vector

Satisfy:




Examples

1. reciprocal lattices for 1D and 2D-rectangular structures

Reciprocal Lattice to BCC Lattice

Crystal lattice

Primitive translation vectors :

a==—(-X+¥+3);

2
= a -
".‘=2(3 y+2)
53=%(- )

Volume = a%2

Reciprocal lattice
Primitive translation vectors :
-~ 2 e s T 2T AT 2W .
b, === (¥+2): b, ="—(z+X): b, == (x+V)
a a a
FCC lattice

Role of reciprocal lattice in X-ray diffraction

E.(R)«E, "‘p‘”" —oy j,\]){ 1\kn)d\
tal

erysi

E, =E, *F
scattering amplitude F = [dV n(r) exp[i(k —k') o 1]

Reciprocal Lattice to SC Lattice

Crystal lattice
Primitive translation vectors :
a,=ak; a,=ay: 4, =az

Veolume = a*

Reciprocal lattice
Primitive translation vectors :
7
. 27 . 2r,. - & o
h——\b—' y.b,=—2
a a : a

simple cubic lattice with side 2r/a

The first BZ : boundary planes are normal to six vectors +b, .:l‘)_‘. 15‘
at their midpoints

1 = ‘.N: ]
2 n with volume =(2n/a)® 23

Reciprocal Lattice to FCC Lattice

Crystal lattice
z Primitive translation vectors :

4 a, %(_\"! 2);

= ad. .. =
i, —:{_ +X);

: S 1 PO
% " J ﬂ;‘;(-‘ﬁﬂ

Volume = a4

Reciprocal lattice
Primitive translation vectors :

X, . . oa = Amo. a = 2F s a s
b, = (-x+y+2) b, = (x +2), by=—(X+y-2)
a a a

ey

BCC lattice P

Therefore,

- { Vn, when

when




In the elastic scattering Kl =k We prove this in three steps

(1) Show that the reciprocal lattice vector W
is orthogonal to the plane represented by Miller indices
(h,k,).

(2) Now we prove that the distance between two adjacent
parallel planes of the direct lattice is d =2 7 /|G-

Bragg law

Diffraction condition k=G
(3) Show that the diffraction condition is equivalent to the

Bragg law Reciprocal lattice vector

a,eAk=2nv,; a,eAk=2nv,; a,eAk=2nv,

must lie at the intersection of cones (cos 6 fixed)
around each lattice vector.

X-ray diffraction by a crystal

1913 Ewald An Ewaldconstruction E =E*F

scattering amplitude F = [dV n(T) cxp[—r’i}i *r]

n(r) : charge density

.

Real crystal : charge distributed through out primitive cell,
not just at the lattice point

incident k ° 9 '

no elastic scattering peak

Electron
Basis of cloud
atom




F = [d*F n(f) exp[-i Ak ¢ 7]
= Z erlsﬁnj[ﬁ;cxp[—:’.\l\:oT'Illu__“']cxp[—:'.\k:oT‘J]cxp[—r’.\L:oﬁ]

LTI

Structure factor — basis of atom

Taris =
Sg = Zf exp[-iG-=1]
]

electron cloud
.. basis F .
RIIES Diffraction — Ak =G : expl-iakei, .. )
In general,
f; is an atomic property and is different for each basis atom.
L F=N¥exp[-iGe ;::].I'(l"gi n,(plexp[-iGe p]

% .
S bavis f, atomic form factor
=N T fexp[ iGe 1]
!

S structure factor

Hence F,=NS for outgoing beam K=k+G

BCC crystal = FCC crystal =

simple cubic lattice + basis of (0,0,0) and (1/2,1/2,1/2) simple cubic lattice + basis of (0,0,0), (1/2,1/2,0),(1/2
- =0 and x 2 0
» [ x=y=z=0. [

S{v v vy {14

Hence,
Hence,

Diffraction only for v,+v,+v, even
Diffraction only for all v,
Allowed peaks :

A1087(200) < ) o gy ¢ . .
- - - 3 (200) (111) (220) (311) (222) (240) (331) ...
(101) 2487 = = b
L7 (211)

{2217
(222)

(120) (121) (123)

(100) — destruction interference

E:lp Homework

Summary of cubic structures First reflection
Simple cubic Allh, k, £ allowed (100) * Please calculate primitive translate vectors
of crystal lattice and reciprocal lattice to
Body-centered cubic Only h+k+¢ even allowed (110) BCC and FCC.

Face-centered cubic | h, k, £ all odd or all even allowed  (111)

P51 2.1 &2.2 |




Topic:

How do we determine the structure of crystal
experimentally by X-ray diffraction?

Email to ndgong@imu.edu.cn
O]



Chapter Three Crystal Binding

What kind of force holds the atoms
together in a solid?

Contents:
® Types and strengths of binding forces
® Reason for crystal structure formation

® Mechanical properties of crystals

Energies of Interactions Between Atoms
@ @ I[I::> NacCl

® The energy of the crystal is lower than that of the free
atoms by an amount equal to the energy required to
pull the crystal apart into a set of free atoms.

* Magnitude ~ 1-10eV except for the inert gas
crystals (0.02-0.2eV)

* U <E;,,(lonization energy = Binding energy
of valence electrons)

» U controls the melting temperature and bulk
modulus

Why do atoms form crystals or solids?

Answer : Interatomic forces that bind atoms.

Atoms bind due to the Coulomb attractive forces
between electrons and neighboring atomic ions.

Cohesive (binding) energy U

= the energy that must be added to the crystal to separate
its components into neutral free atoms at rest

= Energy of free atoms - Crystal energy

Hence, U>0 to form a stable solid

ENaCl is more stable than a collection of free Na and Cl.
B Ge crystal is more stable than a collection of free Ge.

® This typical curve has a

is

minimum at equilibrium distance | v(R) —== L]
R, '
® R>Ry;
=the potential increases
gradually, approaching 0 as
R=>» oo

= the force is attractive
® R<R,
=the potential increases very
rapidly, approaching <> at
small separation.
=the force is repulsive

e Force between the atoms is the negative of the slope of this curve. At
equlibrium, repulsive force becomes equals to the attractive part.



® The potential energy of either atom will be given by:

V=decrease in potential energy+increase in potential energy
(due to attraction) (due to repulsion)

- . -a b
or simply: V(r) :rT+F

V(r): the net potential energy of interaction as
function ofr.

r : he distance between atoms, ions, or molecules.
a,b: proportionality constant of attraction and
repulsion, respectively.

m, n: constant characteristics of each type of bond
and type of structure.

(a) Molecular bonding
Inert gas crystals : He, Ne, Ar, Kr, Xe, Rn

» Transparent Insulators —completely filled outer

electron shells

I high ionization energies I

* Weakly bonding —van der Waals bonding
« FCC structures except for He3and He4

I low melting temperatures I

[ [Neon Argon [iypton [Xenon)]
[Conesne eneoy @Vimomy [ 002 [ 008 | 012 | 030 |

et empersre (02456 5301 | 1150 | 1014 |

Van der Waals —London Interaction
Consider two identical intert gas atoms

Neutral: positive nucleus + spherically symmetric distribution of

electron charge
B < o

No interaction between atoms -> No cohesion(No solid) ?

Fluctuating dipole —dipole interaction ‘ Attractive interaction

between the atoms

Types of bonds

(@) Van der Waals (Molecular)
Electrons localized among atoms
(b) Covalent  Electrons shared by the neighboring atoms
(c) Metallic  Electrons free to move through sample
(d) lonic Electrons transferred to adjacent atoms

bonding Is a consequence of the electrostatic Interaction
between nuclei and electrons obeying Schrddinger’s equation.

Phase diagrams of (a) 4He and (b) 3He.

Inert gas solids

+*On average spherically symmetric distribution of electron charge
with the positive nucleus in the center.
/

+*But thermal fluctuations (finite T) cause instantaneous electric
dipole moment

- e ﬂllCtllaTIOﬂ‘-ue

ps. The bigger a molecule is, the easier it is to polarise (to form a dipole),
and so the van der Waal's forces get stronger, so bigger molecules exist
as liquids or solids rather than gases.



® On adjacent atoms if the dipoles are random there could be no o -
net force (time average) : )

@® But dipole induces a dipole in neighboring atoms that always . u'
gives an attractive force o —
e - ¥
P q -4

Xﬂ j ﬂ attractive force Repulsive force
linear harmonic oscillators@ Instantaneous interaction

S
No attraction is produced Display a marked X, X,
attractive forces W_’e <:‘> @'m\_e

Model for inert gas solid —two identical linear harmonic oscillators
Xz %,

W"? - . ; % - Srower e R Lo

Hamiltonian for Coulomb interaction energy of the system

p,and p,are the momenta of these two oscillators
C is the force constant

Hamiltonian for the unperturbed system

—no Coulomb interaction

Normal mode transformation --symmetric () and anti-symmetric (a) :>
. . . 2 2 2 2
diabonalization Ho| Pl C—Z% an P 1 C+2i3 X2
2m 2 R 2m 2 R

Total Hamiltonian after the transformation @

) 5 , ) Two frequencies of the
H-= &+1 C_zi ¥2 |+ &Jrl C+2i e coupled oscillators
) 2m 2 R® J® symmetric (s) and anti-

symmetric (a)



The zero point energy

The uncoupled oscillators

The coupled oscillators

Therefore,
the zero point energy of the coupled oscillators is lowered

from the uncoupled oscillators by

[z L (2, (‘ )Le“+
m CR®) —7° 2| CR® 1x2 |CR®

T LT s
o e 2| L2t ), 2\ 2)f 2t )
m{" CR*) ~™|""2(crR®)" 1x2 |CR®

What limits attraction ? --Repulsive force (Pauli
exclusion principle)

Two electrons can not have all their quantum number s the same.

Charge distributions overlap

*  When charge distributions of two atoms overlap, there is a tendency for
electrons from atom B to occupy in part states of atom A occupied by electrons
of atom A, and vice versus.

« Pauli exclusion principle prevents multiple occupancy, and electron distribution
of atoms with closed shells can overlap only if accompanies by the partial
promotion of electrons to unoccupied high energy state of the atom.

The electron overlap increases the total energy of the
system and gives a repulsive contribution to the
interaction.

N atoms in the crystal

where R, is nearest neighbor distance and pR,is
the distance between atom i and atom j

:> X el

Dimensionless
Both lattice sums can be done for any structure.
Sum of 1/p" converges rapidly for large n.

More distant neighbors have more influence on the latter term than
the former term.

2
AU =Lhay L2 |ea|-— A
2 8( CR R
Attractive interaction

The van der Waals interaction, the London interaction,
the induced dipole-dipole interaction

4
A=t 2% = ho@)
electronic polarizability

Empirical formula for such repulsive potential

The total potential for inert gas system

8 T T T T T T
U(r): UPauIi+UvdW

UiR)4e

the Lennard-Jones potential 055 080 09 100 105 140 i1 120
Rio

Potential where empirical parameters A=4ec%and B= 4ec'?are
determined from independent measurements made in the gas phase.

FCC structure and

HCP structure, and

Both structures have 12 nearest neighbors.

BCC structure, and

BCC structure has 8 nearest neighbors.



Cohesive energy of inert gas crystals at 0K
Neon |Argon [Krypton|Xenon

--minimum U, (Equilibrium) RO(A) 313 376 4.01 435
o(R) |2.74 |3.40 |[365 [3.98
Ry o |1.14 111 1.10 1.09

FCC structure

Deviation

uantum corrections
—(2.15)(4N¢) isa minimum

at R, =1.09c, U

tatal —




Review

1. Cohesive (binding) energy U
2. Types of bonds

(a) Van der Waals (Molecular)
Electrons localized among atoms
(b) Covalent Electrons shared by the neighboring atoms
(c) Metallic  Electrons free to move through sample
(d) lonic Electrons transferred to adjacent atoms

3. Molecular bonding

the Lennard-Jones potential

Electron configuration : closed electronic shells
For examples, LiF:  Li*(1S?) instead of Li (1522S)
F-(1S22522p®) instead of F (1522S22p°)

The metallic elements
have only up to the
valence electrons in their
outer shell will lose their
electrons and become
positive ions, whereas
electronegative elements
tend to acquire additional
electrons to complete
their octed and become
negative ions, or anions.

Na Cl

lonization energies and electron affinities of atoms

lonization energy
energy that must be supplied in order to
remove an electron from a neutral atom
Electron affinity

energy that is gained when an additional
electron is added to a neutral atom

lonic bonding is produced whenever
an element w/. a relatively low ionization energy is combined with
an element w/. a high electron affinity.

(d) lonic bonding

Li, Na, K, Rb, Cs

Alkali halides F.Cl Br, |

4 lonic bonding is the electrostatic force of attraction
between positively and negatively charged ions (between
non-metals and metals).

4These ions have been produced as a result of a
transfer of electrons between two atoms with a large
difference in electro-negativities.

#All ionic compounds are crystalline solids at room
temperature.

Electron density distribution
in the base plane of NaCl

| Charge distribution is
! : spherically symmetric.

SR SR o 0 1 B e e

i 2
5 : Like inert gas atoms

4 but
3 . some distortion of
e charge distribution near

the region of contact
with neighboring atom

For example : NaCl

when sodium loses its one valence electron it gets smaller in size, while
chlorine grows larger when it gains an additional valance electron.

] ITLI\E i:am
—— 7,

ionic bond

[

/ ez

Toss ek

cohesive energy



" Walence electron loosely bound to
lonization energy =5.14eV
(energy to remove electron from Na)

Seven valence electrons tigh

Cl:
f/ desire a filled outer shell
o Electron affinity energy = 3.61eV

lon bind by electrostatic attraction
U~-e2/4mer ~ -7 .9eV

NaCl +7.9eV

N moleculars in the crystal
i is the interaction energy between ions i and j (i =)

')j ong range electrostatic

short range Pauli repulsive (Why

where R = nearest neighbor distance

where z = number of

Uy =3, =NzA exp[_,J + 3 9 4i9; nearest neighbors of
= p) 5 mR any ion

:N(uexp(g}g] o= Z o

Madelungconstant

Calculation of Madelung constant

and fn(1+x)=

for one dimensional chain

@ When the Na+ and ClI- ions approach each other closely enough so
that the orbits of the electron in the ions begin the overlap each
other, then the electron begins to repel each other by virtue of the
repulsive electrostatic coulomb force.

@ Pauli exclusion principle has an important role in repulsive force.

To prevent a violation of the exclusion principle, the potential energy
of the system increases very rapidly.

minimum U, (Equilibrium)

Short range repulsive
p=0.1R,

Madelung energy

Madelung constant « : geometric sum

depends on relative distance, number, and sign of neighboring atoms
----- crystal structures and basis

In three dimensions

it is more complicated to calculate .
« very long range electrostatic forces
« very slowly convergent

Special mathematical tricks are used to calculate Madelung constant.

structure Coordinate No
NaCl (FCC)
CsClI (BCC)

GaAs (Zinc blende)
ZnS (Wurtzite)

It depends on the structure of the crystal but not unit cell dimensions.



(b) Covalent bonding

Tetrahedral bond

cC—<C Organic chemistry / diamond 7.3eViatom

Si — Si ‘l 4. 6e\/atom

J Semiconductor

Ge —Ge 3.9eV/atom

4 Covalent bonding takes place between atoms with
small differences in electronegativity which are
close to each other in periodic table (between non-
metals and non-metals).

4The covalent bonding is formed by sharing of outer
shell electrons (i.e., s and p electrons) between
atoms rather than by electron transfer.

4 atoms in the valence band bond to 4 neighboring

structimal coralent ol & stick space-fling
masdel

P =5 s+ oy, + oy, + )
0= o, =, i)
P = o=, + 1, ~ i)
O =5 o=, oy, + 1)

4 Each electron in a shared pair is attracted to both
nuclei involved in the bond. The approach, electron
overlap, and attraction can be visualized as shown in
the following figure representing the nuclei and
electrons in a hydrogen molecule.

L L}
v E -
L e
A A « S
B Ao s .
e O 3 Bacas:
Diamond

2p
1s 2s A
e

2p
1s 2s A
1s°25'2p°
—

Tetrahedral sp? bond

Four lobes emanate from an atom at
the center of a cube. Other atoms are
at the ends of the dotted lines and
lobes point from them toward the
cube center.

High electron concentration




B The bond is usually formed from two electrons,
one from each atom patrticipating in the bond.

B Electron forming the bond tend to be partially
localized in the region between two atoms joined
by the bond.

B The spins of two electrons in the bond are antiparallel.

Consider simple covalent bond : H -H

Both hydrogen atoms would like to form a filled outer
shell--share electrons

Two cases : % 1 (same spins on electrons)

1 | (opposite spins on electrons)

Pauli exclusion principle forbids two electrons with the same states.
4 4 same spins: electrons must stay apart

1+ | opposite spins: electrons can occupy the same place

a hydrogen bond .

between them under certain

conditions i o+
+ 4+

being formed only between the most electronegative
atoms, such as F, O, and N.

Calculated valence electron concentration in Ge.

Neutral H has only one electron
——> covalent bonding with one other atom

In the extreme ionic form of the hydrogen bond, the
hydrogen atom loses its electron to another atom in
the molecule;

the bare proton forms the hydrogen bond.

The hydrogen bond connects only two atoms.

HF," is stabilized by a
hydrogen bond.

(c) metallic bonding

Metallic bonding is the type of |~ ':"' o
bonding found in metal * N
elements. This is the 3 3 3
electrostatic force of attraction ° °
between positively charged ) '8 @ J
ions and delocalized outer | * " . g
electrons. \ 3 J Q‘
The metallic bond is weaker =~ & =& =% 2

than the ionic and the covalent
bonds.



“ A metallic bond result from the sharing of a variable
number of electrons by a variable number of atoms.

<N ///"\\///"\\
SOOI ON
Outer electrons of :;,w:j\ :;:«:j 0f;,w:\’
atoms that form 1OMO) ,v ®
metals are loosely No” NN

©i0

h electrical conductivity : a large number of
in a metal are free to move

conduction electrons

Homework rﬁ

P93
3.1,3.2,3.3,3.53 3.6

1. The potential energy barrier between atoms is reduced,
the electron energy may be well above the potential
energy maximum and their wave functions are then nearly
plane waves in regions between atoms.

2. Weak binding, 1~5eV/atom enlargement of the
internuclear spacing.

3. Metals tend to crystallize in relatively closed packed
structures : hep, fcc, bee, ...

T == R D1 s Xt oot




Review

Types of Bonding

P
lonic
Bonding

Van Der Waals
Bonding

Metallic
Bonding

=
Covalent
Bonding

‘ N\
Hydrogen
Bonding

/ \
High Melting Point Low Melting Points

Hard and Brittle Soft and Brittle

Variable Melting
Point

Very High Melting

Point

Low Melting Point;

Soft and Brittle

Chapter Four Phonons I.

Crystal vibrations

1. Vibrations of crystal with monatomic basis

2. Two atoms per primitive basis

3. Quantization of elastic waves (phonon)

Variable Very Hard 4. Phonon momentum
Non-Conducting Hardness Usually
Non conducting ) Usually not Non-Conducting . :
solid Ne, Ar,Kr and Xe Conducting Conducting 5. Inelastic scattering by phonons
. Ice,
NaCl, CsCl, zns Fe, Cu, Ag Diamond, Graphite organic solids
o /NG /L N\ _/ _/

Prof. HUANG Kun

| RERLERERRR

PEESRES RN
—007KF

Hooke's Law

Crystal Dynamics

* One of the properties of elasticity is that it takes
about twice as much force to stretch a spring twice
as far. That linear dependence of displacement upon

« Concern with the spectrum of characteristics
vibrations of a crystalline solid.

stretching force is called Hooke's law.

¢ Leads to;
— consideration of the conditions for wave propagation % — =
in a periodic lattice, %ggm iﬁ*; <
—the energy content, = - ;“Ziii ?ﬁ_
—the specific heat of lattice waves, oL _f‘_." 2s muh foree | <
—the particle aspects of quantized lattice vibrations Fspring =-k.x soing e T U?
(phonons) g consanti F J |astar s ‘

—consequences of an harmonic coupling between
atoms.

N
M
<«



SOUND WAVES

Mecimiogh
thiauan

WElRL A

Longitudinal Waves

Transverse Waves

Lattice vibrations of 1D crystal
Chain of identical atoms

* Atoms interact with a potential V(r) which can be

written in Taylor’s series.

This equation looks like as the potential energy
associated of a spring with a spring constant :

We should relate K with elastic modulus C:

Force =C

Start with the simplest
case of monoatomic
linear chain with only
nearest neighbour
interaction

— 8 ——a—

Usa Us Usit

The force on the st atom;

The force to the right

The force to the left;

Lattice is not rigid. Atoms can move from equilibrium.

basis atom

T=T, . FT1ull)

lattice point

When wave propagates in the solid, there are
one longitudinal and two transverse polarizations

LRI IRE IR T (R S T W

Ysq Has1

5+

s-1 5 s+1 s5+2 s+3  s+d4 a3 &2 &1 s s+l 842

Monoatomic Chain
The simplest crystal is the one dimensional chain of
identical atoms.

Chain consists of a very large number of identical
atoms with identical masses.

Atoms are separated by a distance of “a”.
Atoms move only in a direction parallel to the chain.
Only nearest neighbours interact (short-range forces).

[ —

® Set of coupled, linear, second order differential equations.

® Hard to solve in general if M's and C's are different.

® Method : a trial solution (good guess)



* All atoms oscillate with a same amplitude A and
frequency . Then we can offer a solution;

u, (t) = Aexpli(kx, — t)] where x, =sa

—

Dispersion relation

For a small k (ka<<1) Long wavelength limit

Continuum elastic wave limit

Dispersion : @ =+Vvk

What is the wave velocity?

. i
VAN
i 8

———

il TR

phase velocity

the velocity of energy propagation

group velocity in the medium

phase velocity group velocity

V. =v fsin(ka/2) v, =V [cos(ka/2)

P kal2

Buiseasowm awn

Brillouin zone

The dispersion relation is periodic with a period of 2x /a

Buiseasow sw)

group velocity

phase velocity

_ w
Vp —?



Review

— 8 ——a—

Monoatomic Chain

Usa Us Usit

u, () = Aexpli(kx, - wt)] where x, =sa

Dispersion relation

Note that:

In above equation s is cancelled out, this means that the egn. of
motion of all atoms leads to the same algebraic eqn. This shows
that our trial function U; is indeed a solution of the eqn. of
motion of s-th atom.

We started from the eqn. of motion of N coupled harmonic
oscillators.. If one atom starts vibrating, it does not continue with
constant amplitude, but transfer energy to the others in a
complicated way; the vibrations of individual atoms are not simple
harmonic because of this exchange energy among them.

Our wavelike solutions on the other hand are uncoupled
oscillations called normal modes; each k has a definite w given by
above eqn. and oscillates independently of the other modes.

So the number of modes is expected to be the same as the number
of equations N. Let’s see whether this is the case;

The displacement can always be descried by a wave vector

 versus k relation;

[0}

A

=~V

How about the motion of atoms?

The relative displacement between two adjacent atoms

For a fixed k,

same

O

For the other fixed

The displacement can always be described by a
wave vector within the first BZ.



What is the physical significance of wave numbers
outside the range of ?

ACALA
NNV

White line :

Green line : ‘

Consider that k’s range over all reciprocal space,

All the information is in th:

the rest is repeated with periodicity Z = /a —that is, the
frequencies are the same for w (k) and w (k+G) where G is
any reciprocal lattice vector

v.=0 No propagation (standing wave)
Transverse (shear)

\f

Longitudinal (sound)

*The points A and C both have same
frequency and same atomic displacements

*They are waves moving to the left. AO

*The green line corresponds to the point B
in dispersion diagram.

*The point B has the same frequency and
displacement with that of the points A and Cc A
C with a difference.

*The point B represents a wave moving to ;
the right since its group velocity (d © /dk)>0. Y
- ®0 A 28 K

*The points A and C are exactly

equivalent; adding any multiple of

2m/a to k does not change the

frequency and its group velocity,

so point A has no physical
X significance.

Group velocity of vibration wave
=V |L(‘Mka. _:)‘
At the BZ boundary k=+Z A=

Zero group velocity

® fundamentally different from elastic wave in a continuum
® any wave (vibration or others) is diffracted if k is on the zone boundary
® |eads to standing wave with zero group velocity

More complicated lattices

(TTTTTT | TETTTE Y TOTTTD
ST TR TR T W T TR T e
Locoooo L ooooae S anoana)

1st and 2nd nearest neighboring couplings in 1D monatomic chain
R T W R

L e
b B 8 F B B B B

Two dimensional monatomic rectangular lattice

How about two atoms per primitive basis in one
dimension?




Chain of two types of atom

® Two different types of atoms of masses M and m are
connected by identical springs of spring constant C;

(n-2) (n-1) (n ) (n+1) (n+2)

wM

Uns Una U, Unn Unez

® This is the simplest possible model of an ionic crystal.

® Since ais the repeat distance, the nearest neighbors
separations is a/2

1D diatomic lattice

Equation of motion for mass M1 (sth):
mass x acceleration = restoring force

Equation of motion for mass M2 (sth):

T\-‘Il(:—(l'_ll_]ll &gt —(L v &5 4y g1

-M,0*u = Cv{l+e™ )-2Cu

2c-Me*Ju-Cll+e™)v=0
(c-Me?Ju-cli+e™)

We will consider only the first neighbour interaction
although it is a poor approximation in ionic crystals
because there is a long range interaction between the
ions.

* The model is complicated due to the presence of two
different types of atoms which move in opposite
directions.

Our aim is to obtain w-k relation for diatomic lattice

Two equations of motion must be written;

One for mass M1, and
One for mass M2.

Offer a solution for the mass M1

For the mass M2




Dispersion relation

'| M‘ ”

AM M,

‘\t'l
(M, +M, )

+ optical branch

‘1;' M Two branches
— [3c correspond to
V1, + signs of

dispersion relation

4MM,
————sin
(M, +M, )

Optical Branch

——Upper branch is due to the
+ve sign of the root.

b Acoustical Branch

Lower branch is due to the
-ve sign of the root.

* As there are two values of ® for each value of k, the
dispersion relation is said to have two branches;

* The dispersion relation is periodic in k with a period
2 m /a=2 = /(unit cell length).

e This result remains valid for a chain of containing an
arbitrary number of atoms per unit cell.



Review

1D Monoatomic chain —a—t—a—

Usy Us Uy

u, (t) = Aexpli(kx, — t)] where x, =sa

1D diatomic lattice

_+_”

M,

1. For asmall k (ka<<1) long wavelength limit (1 >>a)

sin (ka/2) ~ ka/2

MM,
(M, +M,

A
fC
/ wmax =2=
m
=w
c 5 A V, Ik
—a ) Aa 2442 k
Long wavelength limit
2

Optical Branch

,:>Upper branch is due to the
+ve sign of the root.

b Acoustical Branch

Lower branch is due to the

-ve sign of the root.

o = [ka) @ K
)

Y 2(M, +M,

1
optical branch  ®, = [2C] - @ is finite
M, M,)



2. At BZ boundary k=% = /a: sin (ka/2) ~ =1

4M M,

IMM,
(M, +M,)’ )

M, +M, |

3. How about M1=M2

Cj)m:\/%m

optical branch is
higher k values
folded back to
diatomic BZ

acoustic branch

-1.00 -0.75 -0.50 -0.25 000 025 050 075 1.00
kal2 (2x/a) 9

2)k=n/a

Acousitic branch

optical branch

11

M,>M, w_=+/C, ' L _ L 4
VLM | M M VA
Gap
optical - I 1] (1 1 2C
, =+ t |+|
branch - WM, M. (M, M, M
M, > M, .
E: [
Y M
acoustic branch
-mnla nla
8

4. Amplitude of adjacent atoms

ika |

1) k=0 Ju—Cli+e

Acousitic branch  o=0 | meu L S T A

M M, M. M M M, M
—o—@—0—@—0—@——0
u, u U,
optical branch
A M M
? It ? It
l
o o
M M M
v

Transverse optical mode Transverse acoustical
for diatomic chain mode for diatomic chain

Amplitude of vibration is strongly exaggerated!
12




In three dimensions

p atoms per primitive cell 3p vibration branches

Acoustic (3) : LA (longitudinal)
TA, (transverse)
TA, (transve

Optic (3p-3) : LO (longitudinal)
TO (transverse)

Si-diamond structure
Points :data
Lines: model calculatio

G. Dolling, in “Inelastic scattering of Neutrons in Solids and Liquids®, P.37, 1963,

Born-Karman:

There are infinite crystals out of finite crystal,
and the motion of atoms are identical inside each
crystal.

For example:

2 N atom form a cirque,
which make all atoms to be
equivalent.

B The motion of atom can

be seen as linearity, due to
numbers of atoms are large.

Iquantized energy of vibration mode I

Each k has a corresponding «,
what is the energy associated w/. This mode?
Some quantum systems:

photons: k=2=/1 photon energy E=hw

w=ck mode energy E kyf@hm)

A particle in a box: Number of photon at (k,w)

Periodic boundary conditions (Born-Karman)

17

So far, @ and k are continuous except that,

+ kis restricted in the first BZ (discrete of lattice spacing)
+ @ is forbidden in some gaps (splitting of acoustic and optical modes)

Additional quantization effects:
a k is quantized by finite crystal size.

9 Energy of vibration mode is quantized by quantum effect.

Real crystal size |:> Finite crystal size

5\’ different T2

Eg. 1D monatomic chain

latoms <(¢—> N+1 atoms

[u_ (k.)=A .:\']w[.-l kx, —at ] where x,=sa ] = =

—_

Nak = 27h
[ k= h[z—”j discrete ! ]
Na

N=20, k=h(2n/20a)=(h/10)(= /a ) only 20 modes are aIIolVé/ed.

Phonon: particle-like properties
number n,

Energy ho,

wavevector k,

ersytal  momentum lal = Frf(l ot a real momentum !

What is the real momentum?  Physical momentum

ole crystal

ation of the whi
...... —— e ———

but P —nk=0

erputal



Lattice vibrations

Specifying the vibrational states of the crystal by specifying
number of phonon in each state k;

(k ;) is determined by structure and binding

n; is determined by excitation (thermal, acoustic, etc..)

Determination of phonon structure :
Neutron scattering —neutrons only scatter off atoms, not electrons

Primary tool for obtaining phonon dispersion relation
Elastic scattering

condition k =k+G

Inelastic scattering

honon emission

N

kK +§=k+G and ': (0 AL K

Experimental setup

detector

! 4

Triple axis : rotation of sample

sample

Selected
energy ou

p——
=
Single crystal

w2
% monochromator
/4 Single crystal

monochromator

Neutrons or X-rays with
broad range of energies

19

Simple harmonic oscillator:

1} e
14— [ho where @=|—
Vm

Zero point energy

Lattice vibrations: RECAEEEES

[frequency

1)
energy E_ :[ n+ |.frm SHO

Phonons: can be thought as partiles interact with other
electrons, phonons, etc... 20

Experimental measurements of dispersion curves
« Dispersion curves w as a function are measured by inelastic diffraction

« If the atoms are vibrating then diffraction can occur with energy loss
or gain by scattering particles

+ In principle, can use any particle —neutrons from a reactor, X-rays
from a synchrotron, He atoms which scatter from surfaces, ...

Neutrons are most useful for vibrations

For 1 ~ atomic size, energies ~ vibration
energies

22

Measure k.. kr’ and AE m(1072Hz) [100]

mp. WOEEWICWTOM  for phonons .

A friple axis neuiron specirometer at Brookhaven

ki2n/a)




[ Homework |

4-1 Monatomic line lattice.

4-3 Basis of two unlike atoms.
4-5 Diatoms chain

4-6 Atomic vibrations in metal.

25



Review

1. Vibrations of crystal with monatomic basis

Dispersion relation

2. Brillouin zone

Diffraction condition

Start at reciprocal lattice
Bisect all G vectors with planes
Enclosed volume is Brillouin zone

Brillouim zone surface describes all k
vectors that are constructively
diffracted by the crystal.

4. In three dimensions

p atoms per primitive cell I:> 3p vibration branches

Acoustic (3) : LA (longitudinal)
TAl(transverse)
TA2(transverse)

Optic (3p-3) : LO (longitudinal)
TO(transverse)
N primitive cell ) 3pN vibration branches

Acoustic (3N) : LA (longitudinal)
TAl(transverse)
TA2(transverse)

Optic ((3p-3)N): LO (longitudinal)
TO(transverse)

0.5 0.0

0.5

k [(2x /a) m™]

2
3. 1D diatom lattices
+ optical branch
[
N M
M, > M, e
\ Vi
1 ( al
-nla nla
4

Z75. phonon

PHONONS

* Quanta of lattice

vibrations

« Energies of phonons are

quantized

E

pphonon -

hv,

h
A

PHOTONS

phonon =

Quanta of electromagnetic
radiation

Energies of photons are
quantized as well

hc

EpthOn =
h

pphoton = I



*Atoms vibrate about their equilibrium position.
*They produce vibrational waves.

*This motion is increased as the temperature is
raised.

In a solid, the energy associated with this vibration and
perhaps also with the rotation of atoms and molecules is
called as thermal energy.

Note: In a gas, the translational motion of atoms and
molecules contribute to this energy.

O

o

Chapter Five

Therefore, the concept of thermal energy is fundamental to an .
understanding many of the basic properties of solids. We would Phonons ” Therm al PrOpertIES
like to know:

*What is the value of this thermal energy?
*How much is available to scatter a conduction electron in a ¢ Phonon heat Capacity
metal; since this scattering gives rise to electrical resistance. ) i X
. ) * Anharmonic crystal interactions
*The energy can be used to activate a crystallographic or a
magnetic transition. e Thermal conductivity

*How the vibrational energy changes with temperature since this
gives a measure of the heat energy which is necessary to raise
the temperature of the material.

Heat capacity from Lattice vibrations Phonon heat capacity

The energy given to lattice vibrations is the dominant Phonons:
contribution to the heat capacity in most solids. In non-

magnetic insulators, it is the only contribution. . .
dominate thermal properties

Other contributions; of materials and affect the
«In metals-> from the conduction electrons. electrical transports of
conductors by scatterings of

*n magnetic materials=> from magneting ordering. electrons

11 12



Phonon generations:

How are phonons created or excited in a crystal?

@ External perturbations—vibrations or sound
transducer

a Scattering of particles—energy transferred into
lattice vibrations

@ Thermal (KgT)—excited at any finite temperature

(T#0K)
13
Mode k, @
Excitation level amplitude (n) w/. Energy
Average of phonons
15

— Low T

—t—

0.0 05 10 15 20 25 230 35 40
B
X' =k T o

Thermal phonons :

consider a system with energy level E,

Probability of occupancy

at temperature T

“Boltzmann factor”

14

Where

Planck distribution of

average # of phonons excited
per mode at o

16

Thermal energy

density of modes

thermal equilibrium

18



Density of states (modes) : uniform in k-space

1D D(k)=density of states = number of states per unit k at k

D(k)dk number of states from k to k+dk
A linear chain of length L carries N+1 particles with separation a.

1. Boundary condition : u,(t)=0 and uy(t)=0 fixed points

ug(t)=u exp[-iwpt] sin(ska)

where

19

2. Unbounded medium but w/. periodic solution over the distance L

for a large system

Periodic boundary conditions u(sa)=u(sa+L)
us(t)=u exp[i(ska-m,t)] where

One mode for each interval

The number of modes per unit range of k

21

One dimensional monatomic lattice

D(k) D(w)

Li2n

BN

-nla ] : (4Cimy»
Total number of modes

e

zla L 2 Omax M
N= | D(k)dk:E?H:N: ! D(w)do = !D(w)dmE3

-zla

Why is there no N = /L for allowed k?

No motion at all.

i T
One mode for each interval

The number of modes per unit range of k

20

The number of modes per unit frequency range

D(w) = 2D(k) 3K = 20(K) _ 2D(K)
do dol/dk v,

Singularity at v,=0, determined by « (k)

Van Hove Singularity

22



Planck distribution of Density of states (modes)

average # of phonons excited
per mode at @

1

D(k)=density of states = number of states per unit k at k

Thermal energy

a0
1D
c B
—Jja ) wa 2 r;a k
! 2
Density of States Standing waves:
5 ition - u.(f)= 0t .
D(k)=density of states = number of states per unit k at k oundary condition : uy(t)=0 and uy(t)=0 fixed points

|
There are two sets of waves for solution;

Running waves

Standing waves ug(t)=u exp[-iwpt] sin(ska)

1l

Nka=nz [——> k=nziL

Running waves:
One mode for each interval [&

E
I

Periodic boundary conditions u(sa)=u(sa+tL)
The number of modes per unit range of k

ug(t)=u exp[ i(ska-o 1) ]




One mode for each interval

The number of modes per unit range of k

The density of states per unit frequency range g(®):

+ The number of modes with frequencies o and o+do will be g(e)do.
* g(w) can be written in terms of D(k).

The number of modes per unit frequency range

D(w)= 2D(k);Lk - ja?;z)k _ 23(k)

@ g Dispersion relation
Singularity at v,=0, determined by « (k)

Van Hove Singularity

m e —
K cos(ka/2)

a
sin® X+cos” X =1=> cos X =/1-sin’ x —— > cos[%aj = |1—sin? (L;J
D(@) = 2D(k) - \/E 1 Multibly and divide
aVkK . z[ka]
1—sin"| —
2

—
(@ -/

Let's remember:

D(@) L E— D(k)dk == dk
a [4K 4K . 2(kaj 2
———sin’| —
m.m 2 L=Na
4K ka
N 2 1 ,y\12 @ =—sin*| —
D(w)=—{ﬁ/f1—_—m2:} m [ 2 )
w Ao o , 4K
True density of states 'max

Let's remember dispertion relation for 1D monoatomic lattice

.M,\ - -
s ——

Z" These allowed k’s are uniformly distributed between k and k+dk

|

D,(k)dk =—dK ——"= DOS of standing wave

II

D, (k)dk = —dk IC——_> DOS of running wave

|

*The density of standing wave states is twice that of the running waves.

*However in the case of standing waves only positive values are
allowed

*Then the total number of states for both running and standing waves
will be the same in a range dk of the magnitude k

*The standing waves have the same dispersion relation as running
waves, and for a chain containing N atoms there are exactly N distinct
states with k values in the range 0 to 77/a ..

8

D(w) = 2D(k) %

Let’s remember dispertion relation for 1D monoatomic lattice

9(w)

True density of states by
means of above equation

wm:2\/K
m

Totel DOSdersif ofedass) tends to infinity at

ic
since the

mla Oy M
N= | D(k)dk=£2§=N= [ D@do= [D@)ido
0 0

-r/a

12



In two dimensions :

periodic boundary condition, N2 primitive cells within a square of side L
expli(kx+kyy) ] = exp[i( k(x+L) + ky(y+L) ) ]
whence

One mode for each interval

The number of modes in k-space

Continuum waves :

o= Vgk depending only on amplitude of k

The number of modes per unit frequency range for each polarization

V o’
(O ; |
7V a quadratic dependence ! 5

D(w) =

Thermal energy
each polarization

There are three polarizations : 2 transverse + 1 longitudinal

<—

Number of modes with wave vector from k to k+dk in k-space

The number of modes per unit frequency range

D(w) = oy A, 2k
do/dk 47° v,
In three dimensions:‘ D(w) = DK) _V 421
do/dk 87’ v,
complicated ! --must map out dispersion relation and count all k-

values with each frequency

Quadratic at low ®

e

LHew)

™ i Op @
5 (b}
N primitive cells in the crystal,

A total number of acoustic phonon mode is N for each polarization.

Cutoff frequency

Cutoff wave vector

Defining-ttie Debye temperature- @ =

- 23 /3 5 /3
o _ 67°VyN _% 67°N
°T kg kgl V ke LV

r

_ haoy

Therefore xp= hw p/kgT= ®p/TThe
o~ 1®ps P Peter Debye, 1884-

T Yoo < 1966 1936 Nobel prize
U=9NKk,T| —| [ d} ——=— winner in chemistry
O,) % exp(x)-1

The total phonon energy

In classical model : equipartition theorem (0.5kT for each excitation mode)
3 translational + 3 vibrational modes : six degrees of freedom
U=N 6 (0.5kBT) = 3NkgT for N atoms in the crystal
C,= 3Nkg Dulong and Petit Law




| _| 3Vh | o [ o 1
Ve, i\ 2w, fet| 4 e\p{frnk T)-1|
,"\\h-. |i h F ]\ H‘l"‘ @ exp“u-].l.\'nﬂ\
| 2n7v, )\ kg A T lexplhekgT)-1)
=9Nkj |LI [y
1©y) le* l:f x a
(x,)
T
| T » =[x ) -
AtT>>0, | U 3Nk, T
C, 3Nkg
19
classical mode!
LI I NL L B I L B L B
U high T C, —=3Nk,
08 = -
I Einstein model
Zos L Cy = 3NK i}‘_I explhiok,T) ]
g | kgT ) (explhowk,T)-1)
04 - —
02 | flaw T C—3NK, (fiealk,T)2 eh=kT 4
a0 AT SR B TP T TP T
00 02 04 06 08 10 12 14 16 18 20

® =k, T/ e
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By Walther Nernst

Einstein model(1907) : N identical oscillators of frequency w

U=3N {n‘fm)

Einstein model

3Nho
explhok,T)-1

Tl '|? explhiak,T)

3Nk
n| (exp(hor/k,T)-1)

At low T, there are systematic deviations between data and Einstein model.

Einstein realized that the oscillations of a solid where complex,
far from single frequency.

Key point is that however low the temperature, there are always some
modes with low enough frequencies to be excited.

Einstein model : At low T, C,, —3Nkg (ho/ksT)2exp(-ha/kgT)
Experimental data show T2 dependence of C, instead

Athigh T, C,—3Nkg same as the Dulongand Petitvalue

AtlowT, C\,—~
20
3 | T— T | _] Diamond,
b{-— - S I - Z—=="I""| Experimental data—red points
s l 1 -|- - g | —| Einstein’'s model ~blue curvew/.
e |
e ©,=1320K
i _|_ ol r/| i | [ Ann. Physik 22, 180 (1907)

Einstein theory shows correct trends with temperature.

For simple harmonic oscillator of spring constant C and mass M,

Debye and Einstein models

C (Jimole-K)

22

Red points : Experimental
data of Ag

©,=225K

In the Einstein model, C
Debye model gives correct T2 dependence of C at low T.

decreases too rapidly at low temperatures.

24



Review
C, —> U

— O

In three dimensions : ‘ D(w) = D(k)
daw/dk

=Y g L
87 V,

9

U =) 3NkgT
c, > 3Nkg

3 —

|

|

—

1

1

\

[
\

1\
l,

1]

T | T

1 /- |

e-K)

C (calimol

Diamond,

Experimental data —red points

Einstein’'s model —blue curve

O

©,=1320K

Ann. Physik 22,

180 (1907)

N primitive cells in the crystal,

A total number of acoustic phonon mode is N for each polarization.

Cutoff frequency

Cutoff wave vector

Einstein model(1907) : N identical oscillators of frequency w

[ 3N
U=3N(njho = T .
) v explhok,T)-1
Einstein model 5
. dU SNkn| Tieo explhiak,T) i
oT|, LksT ) (explhok,T)-1)

Athigh T, C,—3Nkg same as the Dulongand Petitvalue

AtLowT, Cy,—~

The Discrepancy of Einstein model

Einstein model also gave correctly a specific heat
tending to zero at absolute zero, but the
temperature dependence near T=0 did not agree
with experiment.

Taking into account the actual distribution of
vibration frequencies in a solid this discrepancy
can be accounted using one dimensional model
of monoatomic lattice



DebyeT3model

Assume continuum elastic phonon mode only up to some cutoff ey

)

Number of phonon mode for each polarization is equal to N

\

/

At very low temperature, T<<®p, Xp= @ /T —o0

DebyeT3approximation

The Debye approximation has two main steps:

1. Approximate the dispersion relation of any branch

by a linear extrapolation of the small k behaviour:

- - | Debye
Einstein t_—— approximati
approximation on to the
to the i i
0 . dispersion
dispersion
11

Debye frequency

Debye wave vector

L4 Debye temperature

op, @ depend on vy, n, ~vynl/3

High for stiff, light materials

Kittel : Table 1 in ch.5 (P.116)

" T3observed in most
g insulators for T<0.1©

| solid Ar w/. ©,=92K

Why T3at low temperatures ?

+ Only long wave length acoustic modes are thermally excited.
+ These modes can be treated as an elastic continuum.

+ The energy of short wave length modes is too high for them to
be populated significantly at low temperatures.

10

2. Ensure the correct number of modes by imposing
a cut-off frequency @y , above which there are no
modes. The cut-off freqency is chosen to make the
total number of lattice modes correct.




Other simple idea to understand T3dependence :

JOthers are frozen out

Fraction excited at T :

of the total volume in k-space
Each mode has energy kgT

~T3

00 small but correct T3 dependenct

The harmonic theory

~ (r-a)’(dv
V(r)=V(@)+ 2 [drzl:a

1. In harmonic approximation phonons do not interact
with each other, in the absence of boundaries, lattice
defects and impurities (which also scatter the
phonons), the thermal conductivity is infinite.

2. No thermal expansion

3. The heat capacity becomes constant at high
temperatures

The anharmonic effects
15

Phonon thermal conductivity

T, A .

Apply temperature gradient V T —determine heat current density j,

The flux of the thermal energy L = —K—

the energy transmitted across unit
area per unit time

k : thermal conductivity coefficient

17

e
L
&

1. Any real crystal V(R) = 5 v
resists compression to o

a smaller volume than o
its equilibrium value
more strongly than
expansion due to a 0
larger volume.

2. This is a departure
from Hooke’s law,
since harmonic AL
application does not
produce this property.

14

Transport properties (non-equilibrium)

Conduction of sound and heat through the crystal

vibration ‘ ‘ energy ‘

Ultrasonic attenuation Thermal conduction

excite single phonon mode
measure decay of amplitude

apply temperature gradient
measure heat current by phonons

16

In solids, heat is transported
by phonon and free electrons.

For metals, it is electronic
contribution that dominates
the thermal conductivity.

- This does not mean that
< | insulators are necessarily
d poor thermal conductors.

18



Propagations of phonons ?

Ballistic| No interaction/scattering

In harmonic approximation in perfect, infinite crystal,

Expect no scattering —phonon modes are uncoupled,

independent plane waves and
standing waves

v

19

Ballistic : across the whole sample

Diffusive : local

For diffusion, thermal conductivity is defined by

phonon properties

<—— Scattering )
crystal quality (size, defect)

temperature

julWatt/m?], x[(Watt/m?)/(K/m)] = [Watt/m/K]

21

n : concentration of molecules

C : heat capacity per unit volume = nc
vg: phonon velocity

|- phonon mean free path =v,

thermal energy per unit volume across unit area

Average value

% fL<vf>—§<vs>

—

23

Phonons scatter, random walk through crystal

Phonons scatter in real crystals.

Scattering processes : v boundary scattering
v defect scattering
v phonon-phonon scattering

[("adVN S

The flux of thermal energy is based on that
the process of thermal energy transfer is a random process.

ie. the energy diffuses through the crystal, suffering frequent collisions.
20

[ Kinetic theory of gases ]

o=

consider phonons as gases contained in a crystal volume

calculate diffusion in the presence of temperature gradient

Fick's law

22

—>

thermal conductivity




Problem:

thermal conductivity

thermal expansion

u(r

Reset the equilibrium,
let displacement x-x,=2x

A —

harmonic term anharmonic term

Phonon thermal conductivity

The flux of the thermal energy ]U =_Kdl

dx

Propagations of phonons ?

Scattering processes : v boundary scattering
v defect scattering
v phonon-phonon scattering

thermal conductivity

Thermal expansion

From anharmonic terms in binding potential
6ne)

Xg

<.

U (x) = cx?

The general shape applies for any type of binding

anharmonic term gives the net change of <x>

thermal energy causes fluctuation of x from x,

--Thermal expansion



2 3

) x> X
Using e =1+X+—+—+..

203

linear dependence of T
high T limit

Coefficient of linear expansion

Phonon-phonon scattering

phonon displaces atom
which changes the force constant C (anharmonic terms)

I:> scatter other phonons  three phonon process

phononl

After collision another phonon
is produced

phonon2

i — conservation of energy

=? conservation of momentum ?

U-processes occur at high temperatures : require large k (ie. large o)

How large ?

Debye sphere

Phonon-phonon scattering: rate ¢-*oc # of phonons involved

U-process : ¢2ocN,, ~ exp(- @ ,/2T)(phonons w/. large k only)at
intermediate temperatures

At very low temperatures, phonons are populated at low k
mode U process can not occur

Phonon thermal conductivity

thermal conductivity

The mean free path v'defect scattering

v' phonon-phonon scattering

Normal processes : all k; are in BZ

1st BZ in k-
space

crystal momentum is conserved

Umklapp processes : k4 is outside BZ

1stBZin
k-space

outside BZ

R. Peierls, Ann.
crystal momentum is not conserved

Log-log plot

Very low T,
=v,T =constant

Phonon mean
free path £

(et ) £=v T = (1M)exp(1/T)

dominated by U process

£=v T T

«(number of phonons)!
No distinction between
N and U process




Thermal conductivity of LiF crystal bar w/. different cross sectional areas Summ ary of p art (|)

..m Data show »>Solids are defined by their capacity to be solid
50 —to resist shear stress
LBelow 10K, « ‘x_Ta . »A crystal is truly solid (as opposed to a glass which is just a
% 2.As temperature increases, xincreases “slow liquid”)
10| and reaches a maximum around 18K.
A 3.Above 18K, k decreases w/. increasing »Crystalline order is defined by the regular positions of the nuclei
temperature and follows that exp(1/T). crystal structure = lattice + basis
2 4.Cross sectional area influences

k below 20K. Bigger area crystal has, >Lattice and reciprocal lattice

larger it has. Diffraction and experimental studies

Brillouin zone

= ‘y}" o
02 -"/ 82613 770m

, ‘___;} 42475 2:0um >Crystal binding
oosl-4 * G Type of binding

Summary of part (I)
»>Vibrations of atoms

Homework

Harmonic approximation

»Quantization of vibrations

51

phonons act like particles

--can be created or destroyed by inelastic scatterings
) 2. Taking the potential energy of the atoms at o displacement = from their equilibrium
»Thermal properties

separation at absolute zero as

Fundamental law of probabilities

Planck distribution for phonons Ufz) = ex® — ge* — fr', (6)
Heat capacity : C with ¢, g, and f all positive. Show that, using classic theory, the phonon heat eapacity can
Low T, C ocT3 and High T, C ~ constant be written as
Thermal conductivity : & Cv ke [1 . ({. . Jj._.f:-')*_flj,.l 7

maximum as function of T

ity of 1D and layer lattice. (a) Show that the phonon heat capacity

in the Delwe approximation in low temperature lmit is pro al /8, with # is Delwe

temperature in one dimension lattice, # = b, kg = v a, kg is Boltzmann constant,

a is displacement between atoms. (b} Consider a dielectric crystal made up of lavers of

atoms, the adjacent lavers are very weakly bound to each other. What form would you

expect the phonon heat capacity to approach at extremely low temperatures?



History of solid electron theory History of solid electron theory

In 1897, J. J. Thomson In 1928, A. Sommerfel -

Discovered electron Quantum free electron gas

In 1900, P. Drude Debby, Heisenberg, Pauli, Bethe

Classic free electron gas In 1928, F. Bloch

Bloch theory energy band
In 1925, E. Fermi and W. Pauli
Pauli exclusion principle

In 1963, W. Kohn

. - Density functional theor
Fermi Dirac statistics y y

Chapter Six
Free Electron Fermi Gas

In atheory which has
given results like these,
there must certainly be a

« Energy levels in one dimension great deal of true.

Free electron gas in three dimension

Hendrik A. Lorentz

* Effect of temperature on the Fermi-Dirac The NabelPrize n Physics 1902 -—-H.A. Lorentz
distribution

» Heat capacity of the electron gas — -

« Electron conductivity and Ohm’s law What determines if the crystal will be a

+ Motion in magnetic field metal, an insulator, or a semiconductor ?

¢ Thermal conductivity of metal

| Band structures of solids |

Band structures of solids Basic idea : pushing atoms together to form a crystal

empty
states

empty
states
Eg

filled
states

filled
states

filled free atoms molecules crystals

states

Conduction band  valence band filled /Conduction band empty

partially filled Eg<k,T Eg>>ksT
Metal semiconductor Insulator discrete energy levels splitting of levels  band of states
Conduction electrons ~ Conduction electrons No conduction
are available are available electrons

at high T or by doping



ystal

« Low energy levels remain discrete and localized on atoms.
Core states

« High energy levels split to form bands of closely energy
levels that can extend through the crystal
valence and conduction bands

« This mobile electron becomes a conduction electron in a
solid.

« The charge density associated the positive ion cores is
spread uniformly throughout the metal so that the electrons
move in a constant electrostatic potential. All the details of
the crystal structure is lost when this assunption is made.

« this potential is taken as zero and the repulsive force
between conduction electrons are also ignored.

Free conduction electrons in the box

Not interacting

the box)

In one dimension

———Energy levels
Wavetunctions,
A= %L relative scale

Schrédinger equatio,

)z

ol
15

(

©

73

i
Energy in units g—
Quantum number, n

5

Boundary condition

WA and

Free electron model
—treat conduction electrons as free particles

¢ Continuum states—density of states

« Fermi statistics—occupancy of states

« Thermal properties—Thermal energy, heat capacity, ...

¢ Electrical and thermal transports—scatterings of
conduction electron

« Magnetic field effect

The models of Drude and Sommerfeld free electron gas

In reality, interactions of electrons :

electrons(except w/. walls of

lons — steady Coulomb interaction (electron binding)
But

« Screening by core electrons weakens the attraction at
large distance

« Pauli exclusion principle requires that conduction
electrons stay away from core electrons localized at the
atoms.

Electrons — strong Coulomb repulsion
But

¢ Coulomb repulsion

« Pauli exclusion principle
———= Electrons tend to stay apart

How to accommodate N electrons on the line ?

— ——Energy lovels Pauli exclusion principle+
Wavefunctions, spin degeneracy

3 a3
s relative scale
A -ib

(two spins * | per level)

3

Start to fill the levels from
the bottom (n=1) and continue
to fill higher levels with
electrons until all N electrons
are accommodated.

Quantum number, n

Energy in units
e
o

=

S

1,..., n, where n.is the value of n for the uppermost filled level.



|In general cases, such as periodic chain

Boundary condition
One state every k-interval Ak=2 /L

Density of states

2D(k)dk = D(¢)de uniform
Do) = 2D(k)dk _ 2(L/27)
de de/dk
and e=h2k2/2m

2(L/2z) mL [2m

PO =" am ~ Vo | ()’
_mL 1
N

singly spin density of states in
one dimension

One state every k-volume interval Ak,Ak Ak, =(2=/L)3

Dl)—— L -1 %} _ (,zi -

Ak Ak, Ak, (27/L)°

Difference between electrons and phonons

Number N=nV fixed N ~ kgT varies w/. T

Degeneracy Fermions Bosons
(Fermi-Dirac statistics) (Planck distribution)
two per orbital state t | | n per mode excited

Dispersion g ock2 » o<k
Density of D(e) o< el2 D(®)e< ©2
states

upto op  Debye

In three dimensions
Schrodinger equation

Boundary condition : ¥is periodic in X, y, and z with period L

singly spin density of states in
three dimensions

x 2 for spin degeneracy

Conduction electrons : free to move through the crystal
Density of conduction electrons n = N/V

typically n ~ 1022 ~ 10%3cm-3

mostly “s”orbital electrons but also “p"and “d”

How do we determine ground states ?
Ground states T=0, Fill energy level from bottom : 2 per level 1

an
SF —
highest level occupied w/. g¢
€4
€3
€, Fermi energy
g

Energy Maximum energy : g = h?k:2/2m



States w/. k <kgare occupied

Fermi sphere—volume in k-space occupied

by electrons in the ground states

Fermi surface—k. states w/. & = g

: N=24

3

\
g =#of electrons
e

spin volume of D(K)
Fermi sphere

> and

typically,  ~108cm- ~1-10eVvV

Fermi-Dirac distribution

f(e) is the probability that a
state of energy g is occupied

g

Fermi energy is important because electronic
properties are dominated by states near g only.

Tuble | Caloulsted froe electron Fermi surface parsmeters for metals at room Srmperabure

(Enoept for Na, K. Rb, Cs at 5 K and Li st 78 K} -
€, e
B ot o= ross Mz ||
conceairation, purameter . vekecity, merey. Te = ap'kn,
- Metal - cm? n o nomat n eV i deg K
1 L 470 % 102 s L1 10 1.9 x 10* 4Tt 5,48« 10*
Na 265 25 (] Ly 18 ams
K 140 s 073 088 iz 246
b 115 510 o7 081 153 115
[ 0.6 56 064 075 158 L5
Cu (] 267 136 151 700 B12
Az 585 102 120 139 548 536
Au 5.90 a0 L3 L3 551 639
] Be M 168 143 rm M 16.41
g w60 265 L 138 713 o
Ca 480 am L L35 488 54
st 3.5 156 Loz 118 108 A5
s a2 2 0 113 285 434
= i 23 157 L& [ 1090
= [T 250 L# ez 148 w66
3 Al 1808 207 L7s 202 163 134
Ga 1530 Ti9 165 Lol 1035 1201
In 148 24l 150 L4 60 098
4 Fh e 30 157 182 oy 1057
Sl 148 T 162 188 10 168
e e o o ot st Bk s sl Ut b 8 b it Sttt s asserne



. » Ground states T=0, Fill energy level from bottom
Review o

8n
* Free electron mode
treat conduction electrons as free particles
« The potential well
&
In one dimensions highest level occupied w/. g¢
&4
In three dimensions Es .
€, Fermi energy
€

Energy Maximum energy : g = h?kg%/2m

Fermi sphere

Fermi surface—k.states w/. & = g,

kY
\
Ky N=2 ilﬂkg @} =ttof electrons
3 T
f(e) is the probability that a
state of energy ¢ is occupied
and

q Finite temperatures
4 Finite temperatures

Kinetic energy of electron increases due to the

. . increase of thermal energy
What is the probability of occupancy of

an electron state?

| occupy higher energy levels |

What is free electrons contribution to What is the probability of occupancy of an
heat capacity? electron state w/. energy sat T ?

Boltzmann factor exp(-e/kgT) ?  For phonons (Bosons
C, « T® or Constant PCelksT) P ( )
Electrons are Fermions
------- quantum effects such as Pauli exclusion principle

6



Standard problem in statistics

Fermi-Dirac distribution

where p is the chemical potential fo conserve
electron number.

+ At T=0 zrg., when &p=g, f(¢) changes discontinuously
+ Atfinite T, when &= g, f(g)=1/2
* When (g-4) >> kgT, f(€) Boltzmann distribution

(3) Electrons excited from below ¢ to above g as T is increased

Ae~KkgT

T=0, &-function

T=0.01T,

T=0.02T;
T=0.05T;

T=0.01T,
T=0.02T,

T=0.5T,

(2) when T<0.1T¢, st~ ¢, and (e, T)=1/2 when & =E
when g <4, f(e, T)>1/2

when >4, (e, T)<1/2 8

(4) u= w(T) decreases as T increased

why ?
What does determine u? Total number of electrons is conserved
Hence,

Spread energy region increases with increasing temperature.
9

(5) Useful expression for D(g)

N = [deD(e)1(e)

:TderF:Z—;\/E
0

where and

11

Homework :Calculate the n(T) when temperature is finite.

Total thermal energy and heat capacity of electrons at T
Classical point of view, U = N,(3kgT/2) and C,= N.(3kg/2)

S
CT-1meamT
e

i Totmmieen e ety
:

In reality, much smaller at room T

Not every electrons gains energy 3kgT/2

12



At finite temperature (T+#0), electrons are excited to

higher energy states and U(T) increases.
At ground state, T=0

e g
£ =
& =
Q a

Average energy of each electron < ¢ > = 0.6e¢ The filled orbital at finite temperature

13 14

- T N i i ualitative arguments
* Fermi-Dirac distribution function is a symmetric function; Q 9

at finite temperatures, the same number of levels below When we heat the
E. is emptied and same number of levels above E. are specimen from absolute
filled by electrons. zero not every electron

gains an energy ~kgT as

h(ET) expected classically.
' 9(E)
- energy range kgT of the Fermi level B
™ —T=0 number of electrons excited NkgT/E¢
>0 thermal energy of each electron 3/2kgT
total electronic thermal kinetic energy ~ U~(NKgT/Eg)kgT
—E electronic heat capacity C=dU/dT~3/2Nkg(KgT/Ef)
EF

15 16

Total energy Heat Capicity

N=[deD(e)f(e)= [deD(e
0

E

Il . T
ds eD(e)1f(e) (dssFD(s
E

In general, T/T¢<0.01, df/dT has non-zero value within couples of kgT
D(e) is about D(gg) in the energy regime e+ kg T

First integral gives Scend integral gives energy
energy needed to take || needed to bring electrons to
electrons from g to the || & from the orbitals of below
orbitals of energy &> &; || &

17 18



|
r‘i“(r..T]‘ d | 1
8T |, dT| expl(e—gp) i(kyT))+1
_[r: - J|— expl(e—e,) /(k,T))
e Ltexptf_s—sF).-[_knT)]HI"_'

x

X e «T Free electrons contribution to

= 7 where x = =2 X
T (e* +1) AT, heat capacity

Ignore the variation of the chemical potential with temperature

19 20

oc Te1oc m (mass of electron
In general, when T<<@p and T<<T;=¢-/kg F ( )

C =4T + AT3 sum of electron and phonon contributions T Tee | ™t an froe alectron vabors of slectronlc heat  [o=—ye—T

expacity constant ¥ of metals

e by . Phillips and X, Pearkman. The
T

o ve i defined
e | Mg "REEG
13 Cemrend  in mJ mol K 135
i S P
a0 5 |13 10/ ~ (cBaareed v} os eleciicn 3 148
CIT =108 + 257 T -, .__,.-/ K Jea |sc |[n [v e fre Jeo [w Jea |20 |G
u __,." 20 f2s |ior |38 loz | iao 408 |47 |72 Joses]ans |osss
Porassium vsa | 1811 i G | L 025
i --"(/f. 1.3 T
25
T Ru |Rh |Pd | Ag In
. y Jas |osz Joses 168
5 1 100 137 [126
Lot Illl [T 03 o8 Ir Au m
1 ™k 24 f31 Jez o 47
& 114 [ 188 |14

Thermal effective mass

21 my,, obtained from measured y observed, is different from m,. 22

Three separate effect

Interaction between conduction electrons with periodic potential of the
crystal lattice.

------ Band effective mass
Interaction between conduction electrons with phonons.
moving electrons drag nearby ions along
Interaction between conduction electrons with themselves.

A moving electron causes an inertial reaction in the
surrounding electron gas.

For some materials, mycan be 1000me. Heavy Fermions

such as CeAl;, CeCu,Si,,...and other exotic
superconductors.

23



In general, when T<<@®p and T<<T_ =g /kg
C =yT + AT? sum of electron and phonon contributions

e
CT = 208 + =srr'.~,_/‘
-

._.-r""

T, in K

oc Tt oc m (mass of electron)

Three separate effect

Interaction between conduction electrons with periodic potential of the
crystal lattice.

------ Band effective mass
Interaction between conduction electrons with phonons.
moving electrons drag nearby ions along
Interaction between conduction electrons with themselves.

A moving electron causes an inertial reaction in the
surrounding electron gas.

For some materials, mycan be 1000me. Heavy Fermions

such as CeAl;, CeCu,Si,,...and other exotic
superconductors.

Electrical conductivity and Ohm’s law

Applying an electric field /\

Equation of motion

At a constant E,

[ Electric field accelerates

electrons k increases Iinearly]

E=0

k<k; occupied

E shifts Fermi sphere in k-space
Each k increases by

Table & and free choctros vabsrs of eloctronic heat

L - eapacity eonstant y of metals bt L £
b (From compiletions kisedly furnished by . Phillips snd N. Pearkman, The
18 | 038 | thermal elfective sass is defined by Eq. (35
no s |e
Cemrend  in mJ mol K 135
= L
a0 = [obreed 7)o sleciren 7 145
n v Jer [mncofre Jeo [w Jea 2o Joa e [as
335 | ot | 140 Jom Jaos Jaza Jrce Jows]am ases 019
e Y B ey R L

Bb Rh [P |Ag

241 13 Jas Joaz foes

1511 o

126 J20 100

Cs Ba s Hr s w Re o8 I Pt Au {
azo J27 Jio |21 fss Jiz Jz23 Jzea J31 Jes Joms]ir
2zmf e e e e

143 14 1.14

Thermal effective mass

my,, obtained from measured y observed, is different from m,.

Transport properties
Applying [—
driving field current density

Electric current density

Heat current density

coefficients - —
o : electrical conductivity

k : thermal conductivity
L, thermal electric coefficient

coupling both electric and thermal responses

Current density

J= Zk‘,—e\ﬂnk What limits & k ?

7k unshifted
= _eﬁnk scatterings
k
ik, ok
=y - e[—“ + —j ny Electrons can scatter
) m m to states of lower
! hok . energy and reduce
=Z +Z—e—nk current.
k(] kQ
—eh =
=——| > |k
m |\
-
m




Assume collision time is 1

Approaches to a “steady state"value

) non-equilibrium
time

@ In classical picture, all e—s carry charge —e at a constant velocity v,.

And Ohmic devices
:> ne’r Electric conductivity
oO=—
m Free electron model

Copper Cross sectional area

. . S ke<
@ Only electronsknear the Fermi surface contribute to current. § k<<k: _@_ A=wt Length |
y
| [Repia]
P R=pl/A
newly filled n; m

v
O/ p(300K)= 1.7uQcm
n=8.45x 1028 1/m3

states

@ Current is carried only by a fraction of electrons traveling at v;.

newly emptied ng'->

Both newly filled and newly emptied states contribute same current. Fraction of states

: articipatin
n; = electrons : p pating
: o 2%k 2 »
n, — holes : el 208 2% g ®
For E = Lvoltlem ===y ~0.43 m/sec * n ke ve

Electron scattering processes Two additional rules :

- o . (1) Multiple scattering mechanisms
Conductivity o is limited by scatterings (7 , I)

for a perfect crystal, no scattering ;o0

Matthiessen'’s rule

Scattering mechanisms

Regime | not exact but pretty good

Large e-ph scatterings o (T) o<T
Regime Il

Small e-ph scatterings o (T) ><T®
Regime Ill e-e scatterings e (T)

ocT2
Regime IV impurity scatterings o (T)
o<T0~ p

RRR —oo, perfect crystal
In general, RRR ~ 10%to 10* (pure metal)




Experimental evidences for Matthiesen’s Rule

Three different samples w/. different defect concentrations.

McDonald and Mendelssohn (1950).

Example: B

=BZ
RN,
and g ﬂ"
T
dzkx =—[@Tk solutions
dt? m) *
— —
dey :_(@jzk
dt? m) "’
dk,
dt

Helical circular motion | B
o =qB/m “cyclotron frequency”

The electric force and Lorentz force on an electron

In general Hall coefficient

Hall effect reveals density and sign of charge carriers.

Hall resistivity

Motion in magnetic fields

Electric field

change magnitude of

Magnetic field K

change direction of

Lorentz force _| motion direction

Hall Effect
Magnetic field

bl

current
I T | T T density

FAt b
£ ey,
l s
FB

Metal
Li
NE]
K 1. Alkali metals : OK
Rb

Noble metals :
numerically incorrect

Higher-valent metals :
wrong sign



Classical Hall resistance

e
W p4:1u‘_m"\'u | 1.0
[ ea210" e =

b T

Tol 1885

Thermal conductivity

T

The flux of the the energy transmitted across
thermal energy unit area per unit time

k : thermal conductivity coefficient

Electric current density

Heat current density

L;: thermal electric coefficient

Ratio of Thermal to Electrical Conductivity
Kk, #*nkZTz/3m =7L?(k3 jo T

o ne’z/m 3
Lorenz number Lo (kY
3\e
Wiedemann-Franz law Ly= 2.45 x 10-8Watt- Q/K?
Experimental Lorenz numbers: - )
LA W QR 2 Lx 1FW O K2
Element Lat273 K L at373 K|Element Lat273K L at3T3K
Ag 131 237 Pb 247 2.56
Au 235 240 Pt 251 2.60
Cd 242 243 Sn 252 240
Cu .23 233 w 3.4 i

Mao .61 .79 In 3 .3

Fractional quantum Hall effect
(Stormer, Tsui, Gossard, 1982)

by . !'L.J 'Tf‘lllz:l |
J_AJ.\JI]] il 'V! I.JI. ol

saskETIC FELD 1]

i 1998

Giads/AlGads epitial heterajunction at 150 mk.

Heat current from phonon —previous chapter

Apply to free electrons

The electron or phonon Carry the greater
heat current in the metal?

@ In pure metal, the electronic contribution is dominant at all Ts.

@ In impure metals or disordered materials, t is reduced by collisions
with impurities, and the phonon contribution may be comparable with
the electronic contribution.



Quizzes

1. Discussing the relation between thermal
conductivity and temperature in the insulator crystal.

2. 1D chain of two unlike atoms (M and m). According
the phonon dispersion relation, calculating the heat
capacity in the case of M>>m.



Review Thermal conductivity

VT
*Free electron model T iu Te

treat conduction electrons as free particles

The flux of the the energy transmitted across
«The heat capacity of the electron thermal energy unit area per unit time
C=yT+AT?
*Electric conductivity k : thermal conductivity coefficient

Electric current densit
*Hall Effect in magnetic field y

- Heat current density
Hall coefficient

Hall resistively L;: thermal electric coefficient

1 2
Heat current from phonon —previous chapter Ratio of Thermal to Electrical Conductivity
I —
[4
| ﬁ_”z”kéTflgm_i(ki)zT=LT
o ne’z/m 3 :
Apply to free electrons Wiedemann-Franz law
. 7% (kg )
Lorenz number: L=% f] L= 2.45 x 108Watt Q/K?
The electron or phonon carry the Experimental Lorenz numbers: . ;
greater heat current in the metal? L 10°W QK™= ) L 10P W s
Element L at27T3 K Lat 373 K Element Lat 273K L at 373 K
. I . Ag 2.31 237 b 247 2.56
@inpure metal, the eIthronlc contrlbut_lon is (_:iomlnant atall Ts. i 335 240 Pt 351 260
@ In impure metals or disordered materials, 7 is reduced by Cd 2.42 243 Sn 2.52 2.40
collisions with impurities, and the phonon contribution may be Cu 2.23 233 w 3.04 a2
comparable with the electronic contribution. Mo 261 .79 [Zn 231 2.3
3 4

Homework: 1,2,3,5,6

Note

Your homeworks should be submitted
by 5:30 pm on next Friday!

Otherwise...

individual
Coulomb
well localised state
delocalised state




Free electron model

--- neglect the interactions of electrons with ions and
other electrons.

Success:

¢ The heat capacity in
metal. (quantum
effect)

« Electron
conductivity, Ohm'’s
) low.
treat conduction electrons ;
as free particles Ratio of thermal to

electrons are completely E|9Ctr|0§| )
“free of the nuclei” conductivity.

Failings :

* The distinction between metals, semiconductors,
and insulator.

¢ The positive value of Hall coefficient.

* The relation of conductivity electron and free

value electron.

1. What determines if the crystal will be a metal, an
insulator, or a semiconductor?

Band structures of solids |

empty

states
empty empty
states states l
Eg 9
filled filled |
states states

Conductionband  valence band filled /Conduction band empty
partially filled Eg<ksT Eg>>kgT

Metal semiconductor Insulator
2. What form the energy band of solid?

Nearly free electron model

--add the periodic potential of the ion cores to free electrons

Fix) V Patential Encrgy of Singhe Atom
Periodic Encrgy of
Atoms in Cry

Supposing: The
(n:2)a (m=lla 2 (ntlla (n+2ja (mt3)a variation of the

0|
X periodic
potential is
A

Atom

L

| Energy Band Theory |

NCHOM_001

11

Real crystal-potential variation
with the periodicity of the crystal

Attractive potential around each
nucleus.

Chapter Seven
Energy Bands

* Nearly free electron model
 Bloch functions
¢ Kronig-Penney model

¢ Wave equation of electron in a
periodic potential

Number of orbitals in a band

10

Idea of the energy band theory

Ideal crystal

Periodic crystal structure, the potential of ion cores is
also periodic.

Electrons in crystal

The electron move in this periodic potential.

The motion equation  {——> I?:iﬁgr;zfggggrnequation

where

12




Whien ] etanted to think about &, 7 felt that the
main froblem was to evplain low the electrons
conld sueak by all the cons in a metal.... By

straight Fownien analyeis 7 found to my delight
Felix Bloch free electrons only by a periodic modutation.
The Nobel Prize in Physics 1952 ?' gM

1. the quantum mechanics of electrons in crystals and
developing the theory of metallic conduction.

2. the production and observation of polarized neutron beams.
3. Present new method of nuclear induction, a purely

electromagnetic procedure for the study of nuclear moments in
solids, liquids, or gases.

hltp:/Inohelpnze.org/nobe\ipr\zes/phys\cs/\aureates/1952/b\oc]r§h|0.hlm\

Potential energy

Bloch function

~ Periodic function

Vhx T .- Plane wave

The electron wave function in the crystal

Plane wave factor: free electron motion in the crystal.
Periodic function: electron motion in the primitive cell
15

The strict proof of Bloch theorem

(1) The first step:equivalence

Bloch function:

Under a crystal lattice translation r —> r+R

17

Bloch’s theorem
--- solution to Schrodinger equation is of the form

—

plane wave function

periodic function due to periodic potential
u, () =u, (F+R) =u, (F +na +n,a, +nd,)
Lattice vector in real space
Mixing free and bound characters
Free : extend through the whole crystal

Bound : modulated by ion core interaction
14

The expresses of Bloch theorem
u (F)=u (F+R)

The eigen functions of the wave equation for a
periodic potential are the product of a plane wave
exp(iker) time a function u,(r) with the periodicity of the
crystal lattice.

The alternative form of Bloch theorem

The function waves are the product of the
Bloch function time the phase factor exp(ikR)

16

(2) The second step

For each lattice vector R we define a translation operator Ty

The Hamitonian is periodic T, H = HT,

T is commuting operator

18



The eigenstate of H can therefore be chosen to be

simultaneous eigenstates of all the Ty

One dimension
mp- T ¥ =c(a)"¥

Periodic boundary condition

[E—

N

3
N

ika

c(a)=e where L

Q

19

Three dimension

S
S

Summarizing

b; are reciprocal lattice vectors

T ¥ = ¥(r+R) =e™*¥(r)

The Bloch theorem

20



Review

*Nearly free electron model

add the periodic potential of the ion cores to free electrons

*Bloch’s theorem

201

Origin of the energy band and gap

A free electron

Ke<< kgzand 1>>a

Electron wave function samples
many atoms

U=constant
“Free Electrons”

BZ boundary

Note : valence electron #

Typical metals v>1and hence, k.~ Kg;.

3

1D electron wave function

electron in a linear chain of lattice constant a

atom
——— o o.x

NV

k small (1 >>a)

Free electron Plane wave

k= + n/a (BZ)

Bragg reflection standing waves
5

| Origin of the energy band and gap |

| Magnitude of the energy gap |

| Kronig-Penny Model |

ke<~ kgzand 1>~a

ke> kgzand 4 ~a
Diffraction of Bloch waves
--Bragg scatterings

“Energy gaps”

Electron probability density

For a pure traveling wave exp(ikx)



k= * n/a(BZ) Energies due to potential energy U(x)

High density at atoms

Low density at atoms

probability [ density
Energy difference

The potential energy of an electron in the field of a positive ion is negative

Magnitude of the energy gap

expanding potential U(x) in Fourier series :  U(x)=U(x+a)

Free electrons : U=0

E

0
Ll G : reciprocal lattice vector

Result :
Inverse

energy band: due to the periodicity of lattice
energy gap:due to Bragg reflection of Bloch waves
Using

» Standing wave at the zone boundary.
« Energy gap—energies at which no wave can travel Energy gap is equal to the

through crystal E,=2U, , ,,= 2Ug,; Fourier component of crystal
potential.

9 10
For instance, Hence
The average of total energy
L
E, = der//:H v,
[— i The first-order energy

E :jdxyl "Hy

0 1 12




Kronig-Penny Model

--Square well periodic potential by Kronigand Penney

square well U(x)

0<x<ap(x)=Ae" +Be ™

242
—b <x<0,p(x)=Ce™ +De™™ . €= 40

(2) x=a

How about other boundaries ?

Solving (1) and (2)

x =a? What is ¢ (a<x<a+b) ?
X =-b? What is ¢ ( -a-b<x<-b) ?
By Bloch theorem |

| The determinant of the coefficients of A,B, C,D vanishes

y@a<x<a+b)=y(-b<x<0)e @™

w(-a—b<x<-b)=y(-0<x<a)e*®®

15

16

The result can be simplified by a periodic delta potential P :ameasure of strength of the barrier
b —0 and U,—~oco

Hence, bU, is finite and

remain finite !

(1) P—0 implying that K—k free electron
Dueto sinh(gb) —qgb

and cosh(gb) -1

(2) P00 —> —

| ——

17

18



cos(Ka)

(P/Ka)sin(Ka)+cos(Ka)

a2

Discontinuity occurs at Ka=n z (corresponding to ka=nr) where neZ

Energy band

{PiKa)sin Ka + cos Ka 2m

7 A O W

20

Conclusion

* This model can be solved in terms of elemental
functions.

* The results have shown that the energy form the
energy band in periodic field.

* The model can be develop to discuss the surface
state and the multiple layer film.

22




Review

1. Nearly free electron model

--add the periodic potential of the ion cores to free electrons

4 L

[ Energy Band Theory |

3. Origin of the energy band and gap

energy band: due to the periodicity of lattice
energy gap:due to Bragg reflection of Bloch waves

- 0
a——BZ zone—a

2. Bloch’s theorem

k= * n/a(BZ)

probability [ density

4. Kronig-Penny Model

U(x)
0

0

b —~0and U,—~oo

where
where

O<x<a
-b<x<0



Quiz .%:

1. The wave functions of the electron will satisfy the
Bloch theorem. Supposing a represent the lattice
constant. The wave functions of electron are listed
below. Calculate the wave vector in these states.
_WK' #n'n’
Tim 2ma
Energy band 2.

Kronig-Penny Model. Considering the limit

b=w,U,= « derive the expression about the energy,
then analyses this result.




|

Merry Christmas
Happy New Yearll

Marry l:hl'lnllulhv

2. Bloch’s theorem

| | u (F)=u, (F+R)

k= * n/a(BZ)

‘ 2COS'R‘Y’)—2COS"’%‘:(’,/

‘Qsin(k‘-r’):izgn\ sy
La )

Review

1. Nearly free electron model

--add the periodic potential of the ion cores to free electrons

4 L

[ Energy Band Theory |

3. Origin of the energy band and gap

energy band: due to the periodicity of lattice
energy gap:due to Bragg reflection of Bloch waves

a——BZ zone—a




4. Kronig-Penny Model

where 0<x<a
where —-b<x<0

b —0and U,—~oo

| Electrons in a weak periodic potential |

General approach to the Schrodinger equation when
the potential is weak.

1. The electron-ion interaction is strongest at small separations,
but the conduction electrons are forbidden from entering the
immediate neighborhood of the ions because this region is
already occupied by the core electrons.

2. In the region in which the conduction electrons are allowed,
their mobility further diminishes the net potential any single
electron experiences, for they can screen the fields of
positively charged, diminishing the total effective potential.

For a general potential, U(r ) is periodic in the lattice

Fourier series

The Fourier coefficients Ug

I pipted

2m  2ma’

Wave equation of electron in periodic potential

Equation of motion

The motion of one electron in potential of the ion
|:> cores and in the average potential of the other
conduction electrons.

Bloch theorem

Born-von Karman boundary condition

Wave function obeying the Born-von Karman boundary condition

g

::>

y(x)=) Ce"
X

U(x)=> U™

One dimension




The kinetic energy term

k k"

2
z[[ikz _g]ck }ikx _ _ZZUGCkei(wG)x _ _Z[ZUGCKLG}eik'x
2m K G G

The potential energy term

1l

2
zh_kzckeikx +ZZUGetiCkeikx :gzckeikx
2m G K 3

k

For convenient to write g in the form q=k-G

the central eq.

o Gis areciprocal lattice vector
o k liesin the fist Brillouin zone

The original problem has separated into N independent problem

Case 1l The Kronig-Penney model

---- A periodic delta-function potential

Real function

U(x)=Aa) &(x—sa)

4 L

SIS

4 L

k= q
For fixed k
|:‘> v (X)= ch—Gel(wG)x
G
@ Proof of Bloch theorem
uk(x):uk(X+R) 0

U (x+R) = 3"C, e " = 3/u M =u,(x)
G

According to the central eq.

N
e




Case 2

U(x) = 2U cos2zx/a = U exp(2zix/a)+U exp(-2zix/a)

There are only 2 components U =U_=U (g=27/a)

Approximate solution near a zone boundary

1. Considering a wavevector exactly at zone boundary
at first Brillouin zone boundary %2 g

k=0.5 g=n/a

‘ C(%29) and C(k-* g)is important coefficients. ‘

= U 0 0 Ck-2q)

Acg 0
U [a,—s U] o 0 |lck-g)
0 U A-¢| U 0 cl =0
0 0 U 4,—¢ U | Ck+g)
0

0 0 U A,-¢|Ck+2g)

Kronig-Pennney model

Matrix form of the central eq.

0 |ck-29)
0 Ck-9)

A-¢ U 0 CK)
U | ck+g)

0 U Ay-¢|Ck+29)

Il
o

k=05g ) h2(k-g)¥2m= h3(g/2)¥2m

4

Central equation :




Wave function at first Brillouin zone boundary

w(x) =exp(igx/2) £ exp(-igx/2)

Standing waves,

identical to previous discussion

Along [100] direction,

k!
(000} m
(100) Wik, +2m0a)
3 2 T
f'lk, -27af
(Tog) ==
wlk? +(2ma) )
o10)  TEFETL (601 (0T0),00T)

(110) w (10D.(1T0).(10T)

Two dimensional square lattice
P vl

In the reciprocal space

Al 'T.r:_u. B0, 7). o™

- )
a a a a

12 ¢ Square Lamee along [11]

00y ‘|

0.0 05 ~?|3'1| 1.0

KK (=ama)

[ Empty lattice approximation |

Empty simple cubic lattice, g(k) in the reduced zone
free electron

Look for a G —> K+G=k

k : unstricted and is true free electron wave vector in empty
lattice

free electron energy In the 1st BZ

For other directions, change k,, ki, k,

For other lattices, must use proper Gs

To get band structure of real crystals, turn on weak
periodic potential

=i Band gap opens up at the BZ boundary



Review

Wave equation

w(X)= zckelkx
Ux) =Y U™ Il:

U(x) = 2U cos2zx/a = U exp(2zx/a)+U exp(-2zix/a)

There are only 2 components U,=U_;=U (g=2x/a)

Matrix form of the central eq. . .
i Approximate solution near a zone boundary

: 1. Considering a wavevector exactly at zone boundary
Aoy—€ U 0 0 0 | C(k-29) at first Brillouin zone boundary % g
u Aot U 0 0 Ck-9) k=0.5 g= n/a
0 U A4-¢ U 0 Ck) |=0
0 0 U Ay U Ck+9) k=059 [—) h2(k-g)¥2m=h2(g/2)%2m
0 0 0 U ¢ | Ck+29) @
‘ C(¥2g) and C(- ¥2 g) is important coefficients.
3 4
Aa=¢ U 0 0 0 C(k-—Zg)

U 0 |[Ck-g)

0 0 cK Jo

0 U | Ck+g)

0 0 0 U j,—¢|Ck+20)

Central equation :

=]

Wave function at first Brillouin zone boundary
w(X) =exp(igx/2) £ exp(—igx/2)

Standing waves,

identical to previous discussion




2. Near the zone boundary Introducing a new parameter

: difference bet. k and zone boundary
0 | Ck-29)

0 |jCk-g)
0 c |- @

= U C(k+9) _ 2
0 0 U Au-s|Ck2) 5k=%(j«+}me)i /(4 j’kG) U2

=3

wherek, =h%k?/2m

Two solutions :

— >

First term

second term

Energy bands of nearly free electron calculation

NCHO04 005 "y
Efk) k is unrestricted
and is true free
electron

wavevector.

One component dominates
as we move away from the
boundary.

1 12



Look for

K’ in the first zone Reduced wavevetor

Bloch Theorem

_ i(k-G)x i
v () = ;CK’GG |:> v, (x)=u,(x)e . XCHOM 006

-, E(k)

N

" Check |
gt :

The eigenstates and eignvalues are periodic functions

: d

of kin the reciprocal lattice.

13

Extended, reduced, and periodic Brillouinzone schemes

Periodic zone Reduced zone Extended zone

All allowed states correspond to k-vectors in the first Brillouin Zone.

Can draw ¢ (k) in 3 different ways

15

XCH04 007

E(k)

*Each segment of € versus k is an

energy band

*Energy bands are separated by

an energy gaps: 2Ug

Separate
Or
Continue

18



[ Number of orbitals in a band |

Linear crystal constructed of an even number
N of primitive cell of lattice constant a.

Na=L —

Wy (x)= ch Gel(‘HB)x
G

k=0, +2n/L, £4n/L, £6n/L...Nm/L

19

What determines if the crystal will be a metal, or an
insulator?

In terms of band theory of solids,

the absence of metallic conductivity implies that no
partially filled bands.

In insulator, every band is either completely filled or
completely empty.

Why<?

21

| i. no electric field |

XCHOKS_00s 00

E(k)

Number of states per band ?

Density of state (DOS)

e R

cell

Ny = D(K)AK(BZ) = ——=N

2z a_a
< Each primitive cell contributes exactly one independent
value of k to each energy band.

+ there are 2N independent orbitals in each energy band with
account taken of the two independent orientations of the
electron spin.

Single atom of valence one in each cell

Single atom of valence two in each cell
Two atoms of valence one in each cell 20

Explain:

Case 1: filled band insulator

Energy of electron :

velocity of wave
vector k electron :

velocity of wave
vector -k electron :

22

i with external electric field

[0l
g

23

m....i s E(k)

There is no continuous
way to change the total
momentum of the
electrons if every

accessible state is filled. A

An external electron field will not cause current flow for
filled band case.

24

* r + * *




Case 1: partly filled band

i. no electric field

Without £ XCHO0S 0

Eik)

25

Monovalent Li(3). Na(11). K(19). Cu(29). Ag(47)
——> 1/2 band filled
Trivalent  Al(13) =——> 3/2 band filled

[ Crystal with an odd number of electrons per cell must be metallic. ]

Divalent ——> 1 band filled (insulator ?)

[Crystal with an even number of electrons per cell must be insulator’?]

Alkaline earth metal Be(4)s Mg(12). Zn(30) Divalent

Bands overlap = metal

Crystal with an even number of electrons per cell may be
either metallic or insulating.

Metals D(e)

Overlapping bands
Be,Mg,Ca,Sr,Ba...

Both 3S and 3P bands i
are partially filled. g e

Insulators

No overlap of bands
Si, Ge, ...

Valence band filled

Valence band
filled

Conduction band empty

i with external electric field

With E XCH08 010

Efk)

An external electric field
will change distribution
of electronic state.

26

Insulator Metal Metal
o

aln

Occupied states and band structures giving (a) an insulator, (b) a
metal or a senimetal because of band overlap, and (c)a metal
because of electron concentration. If the overlap is small, with
relatively few states involved, we speak of a semimetal.

28

Homework

P 195
7172737476

30



Chapter 8
Semiconductor Crystal

1) Band gap

2) Equations of motion

3) Intrinsic carrier concentration
4) Impurity conductivity

5) Thermoelectric effects

6) Semimetals

7) Superlattices

e

10584 F —REX L% TIAF HKilby, 12484, G;&H

1947412 A 23H
F At
NPN Gedsth %
W. Schokley
J. Bardeen
W. Brattain

#*AF19564Nobel# 22

Useful nomenclature

Elements :Group IV

C(graphite) 1S22S22P2
Si 1S22S522P63S23P2

Ge
1S22S22P63S23P63d104S24P2
Compounds :
IV-1V: SiC
11I-V: GaAs, InSb, GaP, ..

GalS22S22P63S23P63d104S24P1
As 1S22522P63S23P63d104S24P3
1I-VI : ZnS, CdSe, ...



Vacant conduction band : ]
|t |
Forbidden band | Eg o oL : Jr_ 4' L ]

: : |

ABiaug

z

Filled valence band

.
concentration i cariers per o
2

Band gap Conduction band edge

Electron concentration in carriers per cra

valence band edge

zero temperature zero Conductivity
L. Temperature, K Temperature, K
finite temperature finite conductivity
Band gap Two types of semiconductors ‘
determines intrinsic conductivity and intrinsic carrier concentration ] Indirect gap
Direct gap
conduction band
T wul  Gip oK i K %ndudinn band
I| If‘. 1 L"\I-' : : | E!:I
' Mo o el : _-\
223 017 cds o4 valence band
1 )36 Cdse o k
42 1.2 Cdle ] 16X, L 0
L m L am 3 Band edges (extremes) Band edges of valence
L6 ARC and conduction bans
: S oo ¢ iim at same k at different ks
Tnkh 86 058 TiOy am
(most compounds) (Ge[111], Si[100], ...)

Eg can be obtained by optical absorption

R — = Direct absorption process
Gallium Arsenide | -
6 — [
N Egellev sk Eg-ossev ! F,, = 1,43V
a1 300K . at 300K ir a1 300 K .
4 I = i B S
=2 I /\‘ = %é T
=5 1f 2 1k ! =
e g % %
Z T op—A = oF -
| / 'E /
2F 2F a/
- t] o il/
4 b et o
- B 1 1040
L LT [100]X e




Indirect absorption process

Why is your
computer chip
made of Si, but
the laser in your
CD player is
made of
GaAs(GaN in
the future)?

Why is GaN interesting?

1.5eV 3.4eV

After decades of efforts, finally it is possible to
make blue light emitter and laser.

Shorter wavelength light focuses to smaller spot
implies higher density of information on a CD.

Optical absorption of InSb
Eg=0.23eV

Absorption comfScient in cm

A sharp threshold

&l 03 [ a7

Comparison of absorption

Light emission is related

—very high efficiency in GaAs for excited electron to emit light

-very low efficiency in Si

Equation of motion

In an external electric field E,

The energy gained by the electron in a time interval At

Il
. %




HDI:> Real momentum

setting At—=0

In general, equation of motion for an Bloch electron under Lorentz forces

> Newton's 2nd law where

J

Weak external forces such that band structure still holds.

Under a weak external force F, Momentum of electron

>

Momentum of lattice

Impulse = the change of momentum of the crystal

same as for free electrons

Holes in semiconductors I

« The electrons can “move”if there is an empty state
(a hole) available.

« In a completely filled band (valence band), no
current can flow since electrons are Fermions and « A hole acts under the external forces as if it has a
obey the Pauli exclusion principle. positive charge +e.

/.\I.u Missing electron

= producing hole

« The empty states in the valence band are called “holes”.

€




In a full band : all pairs of states are filled and

If an electron of wave vector k, is missing,
Alternatively speaking,

a hole of wave vector © js produced and

How does a hole move?

8 * Setting the energy of the top of
valence band is zero,

« the lower in the band the
missing electron lies, the higher

Kk the energy of the system.

The band is symmetric :

The group velocity of the hole is the same as that of the electron.

the equation of a motion for an electron

Applying to a missing electron: creation of a hole

% hdkh=(+e)[E+%vk-heh(Eh>xé]

dt
exactly the equation of motion for a particle of positive charge

the equation of a motion for a hole



Review

Two types of semiconductors

Indirect gap
Direct gap

£
\]%ndudjnn band
| E!:I

condugction band

valence band
k

[1]

Band edges of valence
and conduction bans
at different kg

( Ge[111], Si[100], ...)

Band edges (extremes)
at same k

(most compounds)

Effective mass (band mass) |

@

EFor a free electron g(k) = h2k2/2m——, m*=m

EFor electrons in a band, their masses depend on band curvature.

distance to the zone boundary

—>
—

From Newton’s 2nd law H

Definition of the effective mass

Holes in semiconductors

« The empty states in the valence band are called “holes”.

« The electrons can “move”if there is an empty state
(a hole) available.

¢ A hole acts under the external forces as if it has a
positive charge +e.

ar the lower edge of the 2nd band

- o5,

K)=¢,+-—K" whereg=+U
2m

e

ear the top edge of the 1st band

s(R)=e, -2
72

h
where g.=A-U

Considering an anisotropic energy surface

(L) -Ldwo
m=*), "’ dk,dk,

where pand v are Cartesian coordinates.

‘ reciprocal effective mass tensor (3x3) ‘

In three (two) dimensions, constant energy surfaces
(lines) are not necessarily spherical (circular), and the
effective mass is a tensor:

[Lj _ L d%(
m*),, 1 dk,dk,




In two dimensions, free electron

hz 2 2
elkoky) =2~k +ky)

The effective mass depends on the curvature of the bands

F The flat bands have large effective masses
The curved bands have small effective masses

F Near the bottom of a band, m* is positive
Near the top of a band, m* is negative

| m* can be determined by cyclotron resonance measurements.

Effective mass in semiconductors

Cyclotron resonance

energy surfaces of the
conduction and valence
bands near the band edge

where m*is the cyclotron effective mass

direct conduction band

Heavy hole band

Light hole band

x— K
m % 24(k)
dk?

Electron | Heavy hole | Light hole
Crystal

(mg/m) (Myy/m) (myy/m)
GaAs 0.066 0.5 0.082
InAs 0.026 0.39 0.025
Cu,0 0.99 - 0.58

Intrinsic carrier concentration
metallic conductivity temperature

conductivity of
semiconductor

dR/dT>0

dependent temperature

dR/dT<0

“free”charges must be thermally excited and overcome E,




Intrinsic ?

‘ charge carrier concentrations n & p have a strong dependence on T.

when “free”electrons and holes can be created only
by electronic excitations from the valence band o
the conduction band.

Semiconductor are called “intrinsic”

Fermi-Dirac distribution suppose I:]

Electrons

Holes

Bolzmann

Electron concentration in the conduction band

n= T D, (¢)f, (&, T)de
E,

Hole concentration in the valence band

In the parabolic approximation (for simplicity),

The energy of an electron in the conduction band,

7°k?

& =E .+

2m

e

Density of states,




J (m,m, )“’exp\ ’

=constant depends on material and temperature
Eg=Ec-Ev

Independent of E, (u)

‘ At T=0, u lies half-way between the conduction and valence bands. ‘

‘ As T increases, u moves toward the band with smaller effective mass ‘

‘ u does not go far from mid-gap when m, ~m,

‘ - . E
exp| — |d& e -
?!\E Xp[kBT] ‘ Xp(kBT

3/2
D= 2[ mth;I' j oxp E,—u
2rh ke T

For an intrinsic semiconductor n=p,

k T
n=np =2/ —2
=P (27[772

3/2 v _E
mm ) e g
T o on{ 2]

e 2“’ m.kgT ‘ : exp:/ E,—u)
(220? ) T\ kT )

Fermi level

Intrinsic mobility

Electrical conductivity

xn&p
<y

[y mobility )

The magnitude of the vel

Sl units

ocity per unit electron field



Drift velocity of a charge q

1l

—

gt

T=300 k

crystal u.(cm?/Vs) H,(cm?/Vs)
GaAs 8000 300
InAs 30000 450
Diamond 1800 1200
Si 1350 480
Ge 3600 1800
PbS 550 600

The hole mobilities are typically smaller than the electron mobilities

because of the occurrence of band degeneracy
at the valence band edge at the zone center,
thereby making possible interband scattering
processes that reduce the mobility.



Review

Intrinsic carrier concentration

“free”charges must be thermally excited and overcome E,
3/2
n=2[meka;rJ exp u-E
27h ke T
3/2
p=2 mth;I' exp E,—u
27h kT

(kT ) s (-E,
np74\‘ 2,7Rh’ \ (mm,) zexpt s ‘ =

XCHOO7 000 12
E
Conducting band
Increases the 2 295 39
conductivity of pure E
silicon
XCHOO7_000_10
Donors E
Conclucting band
- E

| Impurity conductivity |

Doping : addition of impurities to the crystal

(1) Donors — Group of V such as N, P, As, S
S

Substitutional impurity for semiconductot”
each dopant atom contribute an electron

(2) Acceptors — Group of Il such as B, Al, Ga, I
attract electrons from valence band of semiconductor

create a hole per atom

XCHOOT 000 _11

Acceptors
Conducting band

Filled band




Boron atom

> Siliconatom

Where do electrons / holes of the dopants go? |

Low T : bound T

High T : free

N-doped Silicon

P-doped Silicon

=5 =5 =5 =S, = . __QJI;.;,P

e,
& ' ErnEeam
TR Oty oy *‘_ﬁ — 5o
[Pt e Lt =) s
] i - ez el

Fey Ls f(&“
% 989
=i~ ol ) I RN,
Eerdrdly =,

N [
—y
L2
Teenwre i rircion
Eanent Fa ~
ey
e S y 1802
Tty o \{e: '\o;'l-h,”'
A 5 — %
® (9@;0;
= oeasf e e -
e T = i
[Ty 2
] [ 2“‘(_}"‘ ]
el __ e
Pl

Activated energy —From Bohr model

Hydrogen atom

and

lonization energy

The fifth valence electron of P atom is not required
for bounding and is thus, only weakly bound. The binding
energy can be estimated by treating the system as a
hydrogen atom embedded in a dielectric.

Donor

]

Dielectric constant

and

a,(10)(10)

13.6eV(102)(101)



The valence —three Boron (B) accepts an electron
from the Si lattice. The hole that is thereby created in
the valence band orbits around the negatively
charged impurity.

The Bohr model applies qualitatively for holes
just as for electrons, but the degeneracy at the top of
the valence band complicates the effective mass
problem.

m
z
g
=2
[
-
@
=]

B
Si 45 67 65 157

lonization energies E; [meV]

Ge 104 102 108 11.2

m
g
g
=
@
=
@

lonization energies E_ [meV]

In a doped semiconductor, Neutrality condition n + N,=p + Ng*

Density of doped donor
Ng= Ngo+ Ng*

Density of doped acceptor
Na = Na0+ Na-

m
2
g
E
@
3
<
m

| an electron in the conduction band can originate either from

the valence band or from the ionization of a donor;

m a hoe in a valence band may correspond either to

the electron in the conduction band or to the
negatively charged acceptor.

For pure N-type semiconductor : only donors are available

where and
D
For the simple case Ng*>>n; therefore, n ~ Ng* = N4-N4° @

=)




solution

At low temperatures, such that

A sufficiently large number of donors still retain their valence electrons,

i.e. are not ionized.

A semiconductor doped with N, donor electrons

1

Dopant carriers are thermally
excited to conduction band

where

E>>keT>E,

Al carriers are excited (Saturation)

n~Ny

Intrinsic carriers are excited from

valence band

log n

Intrin-|

sic
Ranac

‘ Gradient Eg/2k
|
|

Saturation | Freeze-out

Range |  Range
g I s

Fermi Enargy E-(T) |

|

Saturation range(Ey, E,< kgT< E,)

Raciprocal temperature T~

N-type : n & Ng>> p dominated by electrons

electrical conductivity

Hall coefficient

P-type : p & N_>> n dominated by holes

electrical conductivity

Hall coefficient

At the intermediate temperatures,such that

[ ]

The concentration of donor electrons in the conduction
band has reached the maximum possible value, equal
to the concentration of donor.

All donors are ionized.

At high temperatures,such that I:I

A semiconductor doped with N, acceptor holes
Same results

Low Temperatures, kgT<E,

where
Intermediate temperatures, E >>kgT>E,

pP=N,
High Temperatures, Eg~kgT
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2. Primitive cell -A minimum volume cell
Primitive translation vectors
Wigner-Seitz Primitive cell
3. Bravais lattices Basis — . One atom

A Bravais lattice is a lattice in which every

lattice point has exactly the same environment.

Chapter Two Reciprocal Lattice

1. Various statements of the Bragg condition

2dsind=nA

2. Reciprocal lattices Vectors

Recipracal lattice vector G =v,b, +v,b, +v;b,

Chapter One Crystal structure

1. Periodic arrays of atom

ILa’r’rice +basis=crystal structure I

Translation operator

Translation vectors

Every lattice point

4. Primitive cell: A minimum volume cell.

conventional cell: more obvious relation with
the point symmetry operation

5. Directions and planes in crystals

6. Most common crystal structures :

1. Simple Cubic lattice
2. Body Centered Cubic lattice

3.Face Centered Cubic lattice :

Chapter Three Crystal Binding

Types of bonds

(a) Van der Waals (Molecular)
Electrons localized among atoms
(b) Covalent Electrons shared by the neighboring atoms
(c) Metallic  Electrons free to move through sample
(d) lonic Electrons transferred to adjacent atoms



Chapter Four Phonons I Crystal vibrations. Dispersion relation

1. Vibrations of crystal with monatomic basis

2. Brillouin zone

Start at reciprocal lattice &
u, . :
Bisect all G vectors with planes M, & Clv, n,—u+v, ) =C(v, +v,, —2u,)

Enclosed volume is Brillouin zone . . , .
M, r u,,, —v,—v+u)=C(u, +u, -2v)
[

3. Two atoms per primitive basis
A trial solution set

1D diatomic lattice
M, M,
C 22C C 2 C
L ool

u, (t) = uexplilkx, — at)]

where x,=sa
v, (1) = vexpli(kx, — at)] :

ey

Dispersion relation

4. Periodic boundary conditions (Born-Karman)

Phonon: particle-like properties

number n,

+ optical branch .
(36 Energy ho,

] |
N M

wavevector k,

M, > M,

crsytal  momentum PI =hk|




Chapter Five Phonons Il. Thermal Properties

 Phonon heat capacity
» Anharmonic crystal interactions
» Thermal conductivity

2. Phonon thermal conductivity

The flux of the thermal energy = —zcd—T

dx

3. Thermal expansion

4. Phonon-phonon scattering

3. Effect of temperature on the Fermi-Dirac distribution

T=0

Finite temperatures

1. Phonon heat capacity
Einstein model(1907)

3Nhw

U=3Nhho=—F"—"—""—
v explhok,T)-1

Einstein model 5
c dU ANk Tieo | explhiak,T)

v

= 3Nkg <
aT|y L kgT ) (exp(hok,T)-1)

Debye model

Chapter Six Free Electron Fermi Gas

1. Free electron mode
treat conduction electrons as free particles
2.DOS

In one dimensions

In three dimensions

3. Free electrons contribution to heat capacity

4. Electron conductivity and Ohm's law




5. Motion in magnetic field

Hall coefficient

Hall resistivity

6. Thermal conductivity of metal

3. Origin of the energy band and gap

energy band: due to the periodicity of lattice

energy gap:due to Bragg reflection of Bloch waves

4. Kronig-Penny Model

8. Approximate solution near a zone boundary

1. Considering a wavevector exactly at zone
boundary at first Brillouin zone boundary % g

‘ C(Y%2g) and C(- %2 g) is important coefficients. ‘

w(x) =exp(igx/2) + exp(-igx/ 2)

Chapter Seven Energy Bands

1. Nearly free electron model

add the periodic potential of the ion cores to
free electrons

Energy Band Theory

2. Bloch’s theorem

The alternative form of Bloch theorem

The strict proof of Bloch theorem

5. Wave equation of electron in periodic potential

6. Empty lattice approximation

7. Brillouin zone of several kinds of lattice

2. Near the zone boundary

hrg—6 U 0 0 0 | ck-2g)
U fi4,-¢ U 0 o [[cx=g)
0 U 4-¢| U 0 ck |-o0
0 0 U 4,-¢ U | Ck+g
0 0 0 U A -¢|Ck+29)




3. Number of orbitals in a band

<« Each primitive cell contributes exactly one
independent value of k to each energy band.

<+ there are 2N independent orbitals in each energy
band with account taken of the two independent
orientations of the electron spin.

Explain: crystal will be a metal, or an insulator?

3.Holes in semiconductors

A hole acts under the external forces as a positive
charge +e.

Effective mass (band mass)

m* 72 dk?

1 1 d%(K)

5. Intrinsic mobility
Electrical conductivity
w )y mobility )

6. Impurity conductivity

Donors Acceptors

Chapter 8 Semiconductor Crystal
1.Band gap

Two types of semiconductors

2. Equation of motion

4. Intrinsic carrier concentration

3/2
n=2 meks-zr exp H— Ec
27h kT

3/2

(mksT ) (E,—u)

kBT

l (m,m,

\ 277?

Fermi level
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